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MODELING AND SIMULATION OF MICROSTRUCTURE EVOLUTION AND

DEFORMATION IN AN IRRADIATED ENVIRONMENT

Abstract

by Stephanie Anne Pitts, Ph.D.
Washington State University

May 2019

Chair: Hussein M. Zbib

The ability to predict the behavior of structural components in a nuclear power

plant is critical to the nuclear industry. Structural metals in the primary loop of

nuclear power plants must endure challenges such as irradiation and mechanical and

thermal loading, and these structural metal components must continue to function in

potential transient and accident conditions throughout the operational lifetime of the

power plant. This extreme operational environment changes the metal microstructure

by creating additional defects. The physical interactions of dislocations with these

defects govern how the metal will respond to future conditions. Therefore predict-

ing the mechanical response of these metals requires a set of physically based and

reliable models of dislocation and defect interactions. These microstructure elements
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include glide mobile and immobile dislocations, geometrically necessary dislocations,

twinning dislocations, irradiation defects, and thermal aging defects. We present here

a continuum dislocation dynamics crystal plasticity framework to capture the inter-

action mechanisms of these dislocations and defects, verified with a combination of

benchmark problems and comparisons with experimental data for two different types

of structural metals: α iron and nickel-based alloys. In our simulations of α iron

we highlight the advantages of applying a Monte Carlo stochastic model of cross slip

dislocation motion and show the importance of capturing the 3D nature of glide dis-

location and self-interstitial atom loop radiation defect interactions. We demonstrate

coupling of glide dislocations with geometrically necessary dislocations to capture the

influence of lattice bending, including the sensitivity of the geometrically necessary

dislocations to changes in the grain boundary angle. We further examine the in-

teraction of glide dislocations with the twin dislocations and thermally aged defects

which have been observed in a nickel-based alloy with additional models. Finally

we assess the reliability of this crystal plasticity framework by comparing two dislo-

cation glide velocity models across the range of normal operation temperatures. In

successfully applying our crystal plasticity framework to multiple metals, we provide

further evidence of the reliability of our approach. The results of this mechanism-

based continuum dislocation dynamics crystal plasticity framework can be used to

inform engineering scale models throughout the nuclear industry.
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CHAPTER 1. INTRODUCTION

Nuclear power should play a prominent role in addressing the challenges of cli-

mate change. The dire consequences of failing to hold global warming temperatures

below a 1.5oC increase from preindustrial levels were recently summarized in the UN

Intergovernmental Panel on Climate Change report [71]. The Paris Agreement [126]

emphasized the importance of drastically reducing carbon dioxide emissions along

with other greenhouse gases to restrain the increase in global temperatures. During

the 2015 U.N. climate talks, nuclear power was identified as having the ability to

significantly contribute to efforts to combat climate change. Including and increasing

nuclear power capability among the mix of energy generation methods makes at-

taining the tight decarbonization goals of 50g CO2/kWh set by the agreement more

achievable [121].

Nuclear power plants, which supplied 20% of the energy generated in the United

States of America in 2017, produce the majority of carbon emission free energy in

the U.S. [134, 133]. Worldwide, nuclear power avoids the emission of nearly 2 billion

tonnes of carbon dioxide per year [72]. Assuming a moderate growth rate of nuclear

power plants through 2050, the 2018 International Atomic Energy Agency (IAEA)

report predicts the reduction of an additional 1 billion metric tons of carbon dioxide

emissions through the use of nuclear energy [72].
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Additionally nuclear energy is the most reliable source of energy in the U.S. [192];

however, nuclear energy does face a number of challenges, from economic and policy-

based concerns to the technological aspects of power plant operation and waste storage

[72]. On-going research in areas ranging from accident tolerant fuel to advanced

reactor designs to evaluations of existing nuclear power plants under increasingly

taxing potential transient and accident scenarios is aimed at addressing the technical

challenges of nuclear energy.

In 2006 the Department of Energy’s Basic Science Advisory Committee established

the need for predictive multiscale material models under the extreme conditions in

a nuclear reactor as a Scientific Grand Challenge [132]. In addition to the in-core

components of a nuclear reactor, structural components of the nuclear power plant

significantly influence the ability of a nuclear power plant to withstand potential

transient conditions. Among these structural components is the Reactor Pressure

Vessel (RPV) and the steam pipes used for the coolant loops [125].

In nuclear power plants the RPV is the containment vessel for the nuclear reac-

tion. In addition to significant irradiation loads, the RPV is subjected to thermal

and pressure loading from the the power plant operation. Long term irradiation

doses of in-service RPVs increase the brittleness of the material due to the forma-

tion of irradiation defects. Understanding the role of the irradiation damage on the

RPV is important both for relicensing efforts of the current fleet [6] and for devel-
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opment of advanced reactor designs [194]. Because of their ability to better resist

irradiation-induced brittleness, ferritic/martensitic steels, which have a Body Center

Cubic (BCC) crystal structure, have emerged as promising structural component can-

didates for advanced and next generation nuclear power plant designs [209]. In other

advanced reactor designs, such as gas-cooled reactors, nickel-based alloys are being

considered for use in the RPV structure [130]. Nickel-based alloys are already used

in nuclear power plants for the coolant stream pipes, high chromium content nickel

alloys, such as Alloy 625 and 690, show promise for use in the high temperature and

high radiation environment [200]. Significant research is required, nonetheless, to

develop these metals for the challenging radiation and thermal environment of the

proposed GenIV operating conditions [23]. The mechanical response of these metals

to the challenging environment is determined by how the microstructure evolves.

1.1 Evolution of Microstructure under Irradiation

The evolution of the microstructure of metals within a nuclear power plant RPV

is intrinsically a multiphysics problem: atom displacements of the primary knock-

off atom occur within picoseconds while refueling cycles generally span two years

[194]. These nearly instantaneous atom displacements create significant changes in

the structural material microstructure, and these changes limit how the structural
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components, such as the RPV, respond to the cyclic mechanical and thermal loading

across refueling cycles. The microstructure changes from irradiation can also restrict

the ability of the structural components to successfully withstand the extra loading

caused by a potential transient event.

Nuclear reaction fission products interact with crystalline materials on the nanoscale

by knocking single atoms out of place in the crystal lattice [196]. Over time, these

displaced atoms and vacancies coalesce together to form vacancy clusters, precipitate

clusters, and, in BCC materials, Self-Interstitial Atom (SIA) loops [167, 129]. In Face

Center Cubic (FCC) materials, particularly those with low stacking fault energies,

the SIA loops form Stacking Fault Tetrahedrons (SFTs) [69]. In this work, however,

we focus on the role of thermal aging defects within a FCC material. Thermal aging

occurs when a metal is held at a consistent temperature for a long duration, and the

increased temperature enables the rearrangement of atoms within the lattice. Within

nickel-based alloys precipitates often form as a result of thermal aging [184, 164].

Within the crystal lattice microstructure, when a dislocation encounters a defect

it must either slip around or cut through the defect to continue moving [37]. These

defects, caused by both radiation and thermal aging, interact with dislocations, in-

creasing the brittleness of the material by impeding the movement of dislocations

[210]. Similarly, thermally aged defects, such as precipitates, also impede dislocation

motion by forcing the dislocation to either cut through the precipitate or to bow
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around it [89]. The impeded dislocation motion in the microstructure produces an

increase in the yield stress and significant hardening in the plastic regime, causing

the material to behave in a brittle manner at higher temperatures [209]. The physical

interaction of the dislocations with these defects, and with other dislocations, governs

how the the metal will respond to further loading and how it will continue to deform.

1.1.1 Role of Modeling and Simulation

Modeling and simulations are assuming an increasingly large role in understand-

ing the mechanisms of irradiated material behavior and microstructure evolution[131].

Many researchers have attempted to establish modeling frameworks of the microstruc-

ture evolution of both structural metals and fuels under the radiation and thermal

conditions of a nuclear power plant reactor core and pressure vessel, but challenges

to these efforts persist, including the highly non-linear scale-dependent nature of ir-

radiation processes [17, 116].

Multiscale modeling efforts mirror the expansive breadth of time and length scales

involved in the physical process of structural metal irradiation. Atomic or Molecular

Dynamics (MD) simulations span a few picoseconds and model individual atoms

directly [14]. These simulations study the formation of irradiation defects [131] and

the interactions among defects and dislocations [114]. On the opposite side of the
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spectrum, engineering scale simulations rely on heavily homogenous simplified models

to study structures on the scale of meters over a time span of years [170].

To help bridge the gap between these two different types of simulations, many

types of microstructure simulation tools have been developed. Dislocation Dynam-

ics (DD) simulations explicitly model individual dislocations and the interactions of

multiple dislocations with each other and with other lattice defects to develop dis-

location evolution models [204, 8]. This modeling technique, however, is best suited

for the interior of a single material grain and not for modeling dislocation interac-

tions with a grain boundary. Phase field [31, 84] and Visco-Plastic Self Consistent

(VPSC) models [185, 98] both offer approaches which allow the simulation of poly-

crystalline materials. Phase field models are best suited to modeling the evolution

of whole grains, including nucleation and absorption of grains, according to energy

balances but are not currently suitable for modeling plastic hardening responses un-

der mechanical loading. VPSC models, on the other hand, are adept at simulating

the plastic response of polycrystals under mechanical loading in a computationally

expedient manner; however, these models assume consistency in the individual grain

shape. Crystal plasticity models, which calculate the evolution of dislocation and

other crystal defect densities within a predefined polycrystalline geometry, address

the need for a simulation tool for microstructure evolution under mechanical loading.

The crystal plasticity approach combines the ability to model complex polycrys-
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talline grain structures with mechanical loading. These mesoscale models can function

as a bridge to connect microstructure evolution models to macroscale models of the

Ductile-to-Brittle Transition Temperature (DBTT) curve and fracture. The tough-

ness of a material, which governs the macroscale fracture behavior, is a function of

both elastic deformation and plastic deformation. While the yield stress measure-

ments capture the elastic contribution to a materials toughness, information about

the dislocation movement is required to understand the plastic component of tough-

ness. The ability of dislocations to move through a material depends on the types

and densities of defects, including irradiation defects, present in the metal. Efforts

to model the microstructure evolution at the mesoscale level have focused on writing

constitutive equations for dislocation and radiation defect densities within a compu-

tational crystal plasticity framework [17, 28]. Recently developed crystal plasticity

models, including the one presented in this work, retain the connection to the lower

length scale dislocation density models by adopting the dislocation evolution rela-

tions from these studies [161, 101]. As such, crystal plasticity models are a key tool

to study the impact of irradiation and thermal aging on the microstructure evolution

of nuclear power plant structural materials and therefore the resulting effect on the

engineering scale.
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1.2 Crystal Plasticity Models of Microstructure Evolution

Crystal plasticity models play a critical role in capturing the effect of mesoscale

changes in the microstructure on the engineering scale material properties. These

continuum level models calculate plastic deformation by tracking dislocation move-

ment and the interaction of these dislocations with other crystal defects, see Section

2.2.2, including other dislocations.

Crystal plasticity models track the evolution of microstructure by computing the

growth of different dislocation and defect densities in response to mechanical defor-

mation. Here will will first discuss dislocation glide mechanisms, including cross slip,

before considering the influence of the grain boundaries on dislocation glide. We will

continue with a discussion of deformation twinning followed by an overview of the

mechanisms for dislocation movement resistance from other types of lattice defects,

including those caused by irradiation.

1.2.1 Dislocation Glide and Cross Slip

The impact of dislocation evolution the plastic hardening response of a metal was

proposed by Kocks and Mecking: these approaches treated dislcoation evolution as

a two-term model with generation and annhilation terms [85, 117]. In 1983 Asaro

formally connected the plastic slip, caused by dislocations, to the velocity and defor-
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mation gradients by defining the plastic velocity gradient to be the sum of the plastic

slips on each of the slip systems [11]. The Orowan equation is used to relate the

movement of dislocations to plastic slip. This equation states that the plastic slip

rate is a function of the density of mobile dislocations, the Burgers vector of the full

dislocation, and the average dislocation glide velocity [142].

Dislocation Velocity Models

Two different models for dislocation velocity are commonly applied in the crystal

plasticity field: a power law model and an enthalpy-based model A dislocation glide

driving force model, which includes a function of thermal activation energy, was first

introduced by Kocks in 1976 to account for the impacts of thermal energy on the

glide movements of dislocations [85]. The premise of this model is that dislocations

at a higher temperature will have a higher velocity. Because of the direct dependence

on temperature, this enthalpy-based relationship for dislocation velocity has been

adopted by many research groups [10, 145, 161]. Around the same time Rice and

Pierce et al. applied a straightforward power law model for the plastic slip due to

dislocation motion [159, 146]. This flow rule power law model was extended to a

dislocation velocity model in which the exponent is applied to the ratio of the applied

slip system shear stress to the slip system resistance [101]. This model, while not

directly sensitive to changes in temperature, has the significant advantage of being

computationally efficient while continuing to capture the experimental trends.
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Dislocation Density Evolution Models

Recent developments in crystal plasticity modeling have pushed towards disloca-

tion density based models [10, 32]. These models, developed for FCC metals, use

dislocation density evolution equations with origins in the simple generation and an-

nihilation proposed by Kocks [85]. These models separate out populations of screw

and edge dislocations, yet the evolution equations for the dislocation populations still

reduce to a binary multiplication and annihilation balance [10]. Roters et al. and Ma

et al. , also working with FCC materials, use the concept of mobile and immobile

dislocations instead in the dislocation evolution model [160] and [107]. Recent mod-

eling of the BCC steels introduce a dislocation evolution model with terms for mobile

nucleation, annihilation, and locking, where the mobile locking term acts as a source

term for the immobile dislocation density [145, 28]. While these models include a

dynamic recovery term in the immobile dislocation evolution equation, this term is

not coupled back to the mobile dislocation evolution equation. These two dislocation

evolution models include terms for observable dislocation interaction mechanisms, in-

cluding locking and cross slip. The implemented cross slip term, however, relies on

an incomplete probability-based approach that can saturate the dislocation density

and does not account for the stochastic nature of cross slip within the physical crystal

microstructure.
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1.2.2 Grain Boundary Influence

The glide dislocation evolution models we have discussed thus far are developed

for the interior of the metal grains, yet the boundaries between grains also play a

significant role in the evolution of the microstructure. Near the grain boundaries the

grains experience bending of the crystal lattice, and this lattice curvature can exert

long-range forces on the grain in the region of the boundary. Long-range forces can

be introduced into a computational crystal plasticity framework through a strain gra-

dient term. Within crystal plasticity frameworks, the higher order strain terms have

been tied to Ashby’s Geometrically Necessary Dislocations (GND), which accommo-

date bending in the crystal lattice [12]. Nye’s dislocation tensor is used to connect

the strain gradient term to the GND density within a crystal. Kröner, in his earlier

work, characterized the connection between dislocation density and Cosserat curva-

tures [33] with an incompatibility tensor [90]. The GND density is higher near the

grain boundaries because of the localized lattice curvature; therefore GNDs can be

used to incorporate the influence of grain boundaries on the evolution of dislocation

density inside the grain.

Geometrically Necessary Dislocation Models

Physically based models rely on internal variables to model the evolution of mi-

crostructural features, such as dislocations and point defects. Dai and Parks, among
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others, used GND dislocation densities to incorporate work hardening into a crys-

tal plasticity model by showing that the density of dislocations increases in areas of

high strain gradient values [35]. Evers et.al. extended this modeling outlook to solve

for the GND and glide dislocation densities on individual slip systems by including

bi-crystal boundary regions within their model [46]; however, this a priori geometry

forces a static choice of the reach of the grain boundary. In 2004 Mughrabi criticized

many of these models for predicting overhardening of the glide slip system strengths

when both glide dislocations and GNDs are directly included in the Taylor-type flow

stress law proposed by Ashby [124]. As an alternate method of coupling the GNDs to

the glide dislocation evolution, Ohashi introduces the concept of the mean free glide

path. The mean free glide path is used to physically represent the increased glide slip

system resistance from both forests of glide dislocations and GNDs [137, 138]. By

including the density of the GNDs only in the calculation of the mean free glide path,

the modified Bailey-Hirsch model avoids overhardening the crystal glide slip systems.

The calculation of the GND density is more substantial challenge. Although

the Nye’s dislocation density tensor cleanly connects the GND density to a strain

gradient type term, there is not a universally accepted method of determining this

strain gradient term. On the contrary, the breadth and variety of the theories and

implementation attempts are a testament to the notrivial challenge of incorporating

a physically based strain gradient term into crystal plasticity. The approaches can be
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broadly sorted into two different categories: C1 approaches and C0 formulations.

C1 Formulations

The idea to include more micromechanical aspects in continuum mechanics mod-

eling is not new [186, 120], yet the challenges with selecting values for additional pa-

rameters and identifying the meaning of the boundary conditions are far from trivial.

Mindlin’s well-known micromechanics model, which has inspired many frameworks

in the past five decades, has an additional 16 parameters, which must specified in

addition to two elastic constants required for the classical continuum isotropic elas-

ticity model. These challenges proved insurmountable and deterred the development

of higher order continuum frameworks for a number of years.

In the past two decades, higher order continuum models have seen a resurgence

for use in both plasticity and elasticity [2, 13]. Zbib and Aifantis first applied a

higher order strain term, the Laplacian of the strain ∇2ε, to smooth shear bands in

a continuum plasticity model [66]. In 2001 Fleck and Hutchinson reformulated their

iconic 1997 strain gradient theory which sought to extend isotropic J2 plasticity by

identifying invariants of the gradient of plastic strain rate [51]. The theory of Fleck

and Hutchinson follows the work of Mindlin by using only the gradient of the strain

as the higher-order term and introduced the long range term into the variation of

virtual work equation. Inspired by the work by the Cosserat brothers [33], Forest et

al. developed a micropolar theory which completely separates the additional rotation
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variables from the displacement variables except in the constitutive equations [52].

The introduction of the higher-order strain gradient into the governing equations

requires the establishment of additional boundary conditions beyond the usual dis-

placement and stress boundary conditions normally applied in continuum mechanics

problems. Because of the nontrivial challenges in selecting appropriate boundary

conditions, the most successful implementations of higher order C1 micromechanics

formulations are in the field of gradient elasticity. Most gradient elasticity studies

have focused on 2D simulations [13]. Boundary conditions continue to be challeng-

ing, particularly for Hermite interpolation functions, and Askes suggests the use of

couple stress traction free surfaces. Zervos et al. compare a C1 formulation with

a quadratic element with Hermite interpolation functions to a C0 penalty method

using quadratic elements. The Hermite C1 formulations demonstrate quicker conver-

gence with superior results [205]. Tangential higher order boundary conditions, that

is mixed derivatives of the deformation gradients, are set to zero in 2D simulations

[205]. Other research groups have developed new elements and interpolation functions

to deal with the difficulties surrounding boundary conditions [205, 49].

C0 Formulations

The C0 formulations are constructed within the standard symmetric stress diver-

gence governing equation and can be implements with a standard C0 element in a

Finite Element Method (FEM) simulation. These approaches focus on methods to
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calculate a strain gradient term that depends on the deformation calculated in many

neighboring elements. By averaging across the solution computed at many elements,

C0 formulations can capture the influence of grain boundaries when the grain bound-

ary runs through the element neighbor patch. Nonetheless, mesh dependence is a

significant concern in these approaches.

Meissonnier et al. wrote a new User-defined element within ABAQUS to calculate

the strain gradient term within a Hex27 element at the center quadrature point [118];

however, this approach continues to be mesh dependent because the strain term is

not continuous across the elements in this modified C0 element. Recently Abu Al-

Rub et al. applied both the Laplacian of the strain and the gradient of the effective

strain to model long-range effects within a crystal plasticity framework through a

connection with Nye’s dislocation tensor [1], claiming that the inclusion of both of

these higher order strain terms is necessary for thermodynamic consistency. Abu

Al-Rub implemented his higher order terms by using a meshless method to pull the

strain values from the quadrature points within a capture radius and calculates the

strain gradient value by fitting the selected strain gradient values. The process of

calculating the fit strain gradient value may be computational expensive and the

capture radius must be large enough to avoid the introduction of mesh dependence

in the solution.

Other research groups use the gradient of the deformation gradient to capture the
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higher order strain measure. Kuroda and Tvergaard classify these theories as work

conjugate and non work conjugate theories. Non work conjugate formulations do

not require the use of high order stresses and connect the slip rates to back stresses

arising from GND densities [93]. Arsenlis et al. developed physically-based model to

capture non-homogeneous dislocation distributions by writing evolution equations for

edge and screw dislocation fluxes which include a dependence on the gradients of the

dislocation density [9]. In a similar non work-conjugate model, Evers et al. asserts

that at a free surface the density of GNDs vanish [45]. Gurtin’s microforce balance

work is one of best-known work conjugate frameworks. The work conjugate theories,

which are derived to be thermodynamically consistent, require additional boundary

conditions to satisfy the higher order couple stresses introduced as work conjugates

to the strain gradient terms [60]. Gurtin-type theories compute both edge and screw

GND dislocations on all slip systems; these theories are computationally intensive and

therefore have only been implemented thus far in 2D simulations [115], yet predictive

models must be implemented in 3D to be applicable to many engineering problems.

Shizawa and Zbib examined the role of the dislocation density tensor and the

incompatibility tensor within a complex crystal plasticity framework and concluded

that only the dislocation density tensor, taken as the sum of the gradients of slip

on each slip system, was necessary as an argument for thermodynamically consistent

kinematic hardening [166].
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A continued criticism of all strain gradient theories is the apparently arbitrary

choice of length scale [103]. Recent works have attempted to address this criticism

by employing the physical Burgers vector to calculate the GND density [36].

1.2.3 Deformation Dislocation Twinning

Several twinning mechanism models have been proposed for crystal plasticity and

VPSC implementations. The first phenomenological models of twinning were intro-

duced by [39] and implemented into a finite element crystal plasticity framework

by Kalidindi [75, 76]. Twinning models have been adapted to viscoplastic self con-

sistent models for texture evolution [185, 18, 19]. Crystal plasticity models have

been extended with twinning models for Twinning-Induced Plasticity (TWIP) steels,

titianum, and nickel-based alloys among many other materials [161, 163, 77]. As in

the case of glide dislocation evolution models, both phenomenological and physically

based twinning models have been proposed.

Many of the crystal plasticity models for twins in nickel-based super alloys focus

on the mechanism of microtwins. These models introduce the physically based con-

cept of twin dislocation density which is related to the shear strain rate through the

Orowan relation [191], an approach also taken in the modeling of ε-martensite [197].

The microtwin mechanism relies on the presence of secondary γ′ particles in com-



18

merical alloys, which interact with Shockeley partials of glide dislocations to nucleate

twins [86]. In certain spacing configurations, the secondary γ′ particles enable the

separation of the two Shockley partials to create a coherent stacking fault which can

reconfigure into a true twin [191]. The spacing between lead and tail partial disloca-

tions has been measured to be about 20-30 nm in a commercial alloy [89]. Given the

critical role played by these γ′ particles, the microtwinning crystal plasticity models

explicitly include the density of secondary γ′ particles [169, 77], although each model

makes a simplifying assumption. Karthikeyan et al. assume that each twin dislocation

has a fixed width and track the evolution of twin dislocations [77]. Song and McDow-

ell assume a constant number of potential twins per volume in a rate independent

formulation [169]. Nonetheless, neither of these models is appropriate for the binary

Ni2Cr model alloy of interest to us in this work: the secondary γ′ particles do not

occur within the binary alloy.

1.2.4 Strengthening due to Irradiation and Thermal Aging

Because crystal plasticity models relate the accumulation of plastic slip to the

movement of dislocations through the Orowan equation [142], the concept of slip

system strength is used to compute the evolving hardening of each slip system. These

crystal plasticity models compute the slip system strength, or the resistance of each
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slip system to dislocation motion on that system, as a sum of the contributions to

the slip system strength. Physically based frameworks write the constitutive slip

system strength equations as functions of dislocation and defect densities within the

crystal [135, 161]; both defects and other dislocations act as barriers to dislocation

motion [65, 204]. Each term in the sum of the strengths represents the stress exerted

on the dislocations by a particular type of barrier: including the lattice friction for

dislocation motion, the effect accumulated dislocations on the movement of mobile

and twinning dislocations, and the irradiation and thermally aged defects as barriers

to dislocation motion.

Irradiation damage has been incorporated into FCC crystal plasticity models

through dispersed barrier models [9, 196]; the radiation damage defect density is

held as a constant. In 2004 Arsenlis et al. modified the dispersed barrier hardening

model to use an empirical strength coefficient [9]. The number of defects can be re-

lated to the irradiation dose by fitting experimental data [35]. Newer crystal plasticity

models focused on RPV applications couple irradiation defects to the dislocation evo-

lution model by by adding to the slip resistance calculation [94, 145, 17, 28]. Of the

irradiation defects occurring in BCC iron, the SIA loops are considered the primary

defect contributing to low temperature irradiation hardening [167]; therefore, many

of the irradiated BCC iron crystal plasticity models include evolution equations for

the SIA loops [17, 28]. Patra and McDowell have composed a crystal plasticity model
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to simulate the formation of these defect free channels [145]. These models rely on

complex rank-2 tensor representations of the SIA loop densities and employ various

means to restrict the interactions of the SIA loops with glide dislocations. This addi-

tional complexity in the model introduces additional unnecessary computational load

to track the SIA loops on individual slip planes.

Thermally aged defects, such as long range ordered precipitates that occur in

nickel-based alloys [164, 89], also act as barriers to glide dislocation motion. Often

these defects are modeled with either the the dispersed barrier hardening model in-

troduced for FCC irradiation defects or as antiphase boundary sheared particles [89].

In both cases, previous studies have assumed that theses defects are sheared by glide

dislocations

1.3 Identified Research Focus

Among these varied crystal plasticity studies and implementations which we have

discussed, none include all of the models to capture the interactions of the dislocations

and defects relevant to nuclear industry structural materials. All of these models lack

a consistent physical foundation within which to model these different aspects of

microstructure evolution. There is a need for the development of a physically based

unified crystal plasticity model capable of predicting the deformation behavior of
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multiple metallic materials based on the change of the material microstructure from

radiation damage. A measured approach to developing a physically based crystal

plasticity framework must include evaluation of models to ensure that the proposed

terms capture the relevant physics in a reliable manner.

We present here a Continuum Dislocation Dynamics (CDD) crystal plasticity

framework to capture the interaction mechanisms of multiple dislocations and defects

within metals used in structural components of nuclear reactor power plants. This

crystal plasticity framework consists of dislocation evolution equations informed by

physical interaction mechanisms. We have selected physically based models to ex-

pand the crystal plasticity framework with a temperance informed by the end use

application material and environment. In this work we have focused on two simpler

metals, BCC α iron and the FCC binary Ni2Cr alloy, to focus on capturing the dis-

location interaction mechanisms with with other dislocations and defects. The use

of our crystal plasticity framework to successfully model two different nuclear power

plant structural materials demonstrates the strength of our measured approach.

This physically based dislocation density crystal plasticity model will be imple-

mented into the Multiphysics Object Oriented Simulation Environment (MOOSE),

which was developed by Idaho National Laboratory (INL) and is currently used to

conduct predictive simulations of nuclear reactor fuels [195]. As a component of the

MOOSE framework, the predictive CDD crystal plasticity models proposed here can
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play a role in advancing a sustainable power source that can contribute to mitigating

climate change. The implementation of this crystal plasticity model within the open

source MOOSE code developed and maintained by the leading nuclear national lab-

oratory ensures the continued maintenance and use of the model within the nuclear

research domain.

1.4 Overview of Thesis

The organization of the remainder of this thesis is as follows. We begin with an

overview of the theory governing continuum mechanics in Chapter 2. Preceding the

discussion of crystal plasticity theory, we present a brief introduction of the crystalline

structure of metals. This chapter is completed with a summary of the numerical

implementation of the CDD crystal plasticity framework within the MOOSE software.

In Chapters 3, 4, 5, and 6, we present the individual models and the numerical

implementation of the different functionalities of the developed CDD crystal plastic-

ity model to address the needs identified above. Chapter 3 focuses on the modeling

of BCC α iron for use in a nuclear reactor pressure vessel application, including the

introduction of a stochastic cross slip model. The results presented in this chapter

also involve the effect of irradiation defect hardening on the glide movement of dis-

locations in the α iron crystals. In Chapter 4 we demonstration the use of a nodal
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patch recovery algorithm to calculate a semi-continuous measure of the plastic ve-

locity gradient and the calculation of geometrically necessary dislocations from this

recovered tensor. The focus of Chapter 5 is the implementation of a deformation

twinning mechanism, including the extension of the CDD framework to allow mul-

tiple contributions from different dislocation movement systems to the plastic slip

tensor. The results presented in this chapter are compared to a set of micropillar

compression tests, which include unaged and aged samples with long-range precipi-

tates present. Chapter 6 consists of a brief comparison of the two dislocation velocity

models previously introduced in Section 1.2.1. The suitability of the two models for

different simulation criteria is discussed.

In the conclusions, Chapter 7, we summarize the impact of this thesis work along

with recommendations for future work. These recommendations address both the

need to increase the utility of microstructure evolution research to engineering scale

simulations and the exciting possibilities of expanding the study of microstructure

evolution with additional modeling techniques. The work presented in this thesis is

a foundational step to achieving both of these seemingly divergent goals within the

MOOSE software environment.
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CHAPTER 2. THEORETICAL OVERVIEW AND

NUMERICAL IMPLEMENTATION

Solid mechanics is the study of how a solid body changes shape in response to

applied loads and constraints. These loads can have wide variety of forms, yet in

this work we will focus on mechanical and thermal loads. As an example, consider a

solid soft material. Applying a load to this material results in a shape change of the

material. Over time as a load continues to be applied, the type of the body’s shape

change response differs as the characteristic properties of the body evolve. Solid

mechanics, a branch of continuum mechanics, provides the mathematical tools to

understand how an applied load produces a shape change. The applied load creates

a stress in the material, that stress is correlated with a change in strain, and the

strain produces a change in the material body shape. We term this shape change

deformation.

Using the tools of solid mechanics, we can represent the relationship between

displacement and strain with kinematic relations; these relations map changes in the

position of all points in the material from the original shape to the current deformed

shape. Constitutive equations describe the relationship between strain and stress;

while these equations have similar forms, they depend on the specific properties of

each material studied. The relationship between the stress experienced by a material
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as a result of an applied load is explained with the Cauchy equations of motion.

Within classical continuum mechanics, the studied solid body is treated as an ide-

alized collection of continuously distributed particles: a continuum [82]. Nonetheless,

many physical solid bodies can be sorted into smaller components. The relation-

ships explaining the interaction of these smaller components can be necessary to

more fully describe how a solid body deforms in response to an applied load. Met-

als are examples of materials which have been studied extensively by separating the

homogeneous continuum body into smaller components based on physical observa-

tions [69]. Among the many fields which study the mechanics of crystalline metals,

crystal plasticity has been established as a capable tool to explore the relationship be-

tween crystalline microstructure evolution and engineering scale homogeneous stress

response [11, 116, 161].

Physically-based crystal plasticity models, including the Continuum Dislocation

Density (CDD) crystal plasticity framework which is the focus of this work, calculate

the evolution of dislocation densities under stress [10, 161, 101]. The dislocation evo-

lution is further coupled to the densities of additional irradiation defects. Densities

are used to track dislocations and irradiation defects because crystal plasticity is a

continuum level mathematical model. The formulation within a continuum mechanics

framework enables crystal plasticity models to simulate longer time scales and larger

length scales than atomistic and dislocations dynamics models which explicitly track
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each individual dislocation and defect. The common foundation in continuum me-

chanics between crystal plasticity and engineering scale models allows for more direct

transfer of mesoscale material behavior prediction to inform engineering scale models.

The work presented in this thesis adds to the field of crystal plasticity through the

development and implementation of physically based models for metals in irradiation

conditions common for in-service nuclear reactor pressure vessel parts.

We begin our discussion of the theory germane to this works with a focus on the

fundamental solid mechanics concepts within an elastic homogeneous body before

focusing on the concepts specific to crystalline metals. After a brief overview of

the physical structure of cubic crystalline metals and common crystal microstructure

components, we will describe the complex constitutive crystal plasticity relationships

used to calculate the stress resulting from the evolution of crystal dislocations and

defects. We conclude this chapter with a synopsis of the implementation of the crystal

plasticity constitutive equations in the MOOSE and Grizzly software codes.

2.1 Continuum Solid Mechanics Overview

Within this document, a scalar is indicated by a lower-case italicized letter, a, a

vector is indicated by a lower-case bold letter, v, and a Rank-two tensor is indicated

by an upper-case bold letter, T. We indicate a Rank-four tensor with an outlined
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bold upper-case letter, J. In Einstein notation the number of indices indicates the

rank of the tensor: a scalar with a rank of 0 is indicated by a, a Rank-one vector is

written as vi, a Rank-two tensor is denoted with the form Tij, a Rank-three tensor is

indicated by three indices, Aijk, and a Rank-four tensor is written with four indices,

Jijkl. The double dot product is given as the inner dot product, Tij : Sji, and the

triple dot product is specified as Aijk : ·Bkji except where otherwise explicitly noted.

2.1.1 Deformation and Kinematic Equations

The movement, or change in position, of a material point within a solid contin-

uum body from a position in the original configuration to a new position is termed

displacement. Deformation is a function of displacement and is the change in position

of material points within the continuum body, with respect to the original position

of the body. The original body position for each material point is defined within a

fixed reference coordinate system, generally taken at time t = 0. By convention, this

position in the reference configuration is denoted with a capital letter [111], e.g. X

as shown in Figure 2.1 for point P . All of the points in the body at this time frame

are considered to be in the reference, or Lagrangian, configuration [82]. After a load

has been applied to the solid body such that its shape changes, the new position of

the same point is defined with the current coordinate configuration as the current
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P

O

X

Figure 2.1: Example of a deformed continuum solid body with the position of a point

shown in the reference configuration.

position vector x [156]:

x = x (X, t) (2.1)

where t is the time. We note directly in Eq (2.1) that the current position is a function

of the reference position. In an analogous manner to the reference configuration,

the current configuration is defined as the positions of the set of material points

within the body at the current time t. This configuration is also termed the Eulerian

configuration [22].

The assumption of smooth continuous movement between the two positions, for-

malized as the axiom of continuity [82], allows us to write the inverse of Eq (2.1) to

find the reference configuration position as a function of the current position:

X = X (x, t) (2.2)

where t is the time as in Eq (2.1). The relationship between these two positions is
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defined with a displacement vector u

u (X, t) = x (X, t)−X (2.3)

u (x, t) = x−X (x, t) (2.4)

where the first displacement vector, Eq (2.3), is defined in the Lagrangian configura-

tion and the latter displacement vector, Eq (2.4), is defined in the Eulerian configu-

ration. The choice of which configuration to use is heavily influenced the constitutive

relation formulation used, Section 2.1.3.

The rate of displacement change is termed the velocity. As with displacement, the

velocity can be defined with respect to either the Lagrangian or the current (Eulerian)

configuration:

v = v (X, t) =
du(X)

dt
(2.5)

v = v (x, t) =
du(x)

dt
(2.6)

The choice to define the velocity vector in the current configuration, Eq (2.6), has

complicating implications for the calculation of the acceleration with the material

derivative [82]. The reference configuration definition, Eq (2.5), leads to a straight-

forward calculation of the acceleration because the Lagrangian material derivatives

are constant [111].
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Deformation Gradient Tensor

With the mathematical description of the shape change of a body, we now require

a method to describe how a solid body deforms. In order to accomplish this task,

we consider each point in the solid body not as independent unconnected points but

rather as so-termed line elements. In the reference configuration we designate the

line element vector as dX and in the current configuration the line element vector is

labeled as dx. Note the correspondence of the notation used for line elements and

X

dX

x

dx

u

Figure 2.2: Example of a continuum solid body in both the reference and current config-

urations with the line elements labeled.

that used for the material point in the deformation definitions, Eqs (2.1) and (2.2).

The deformation gradient provides a mathematical concept of the rate of change

of deformation and relates the line element dx in the current configuration to the line

element dX in the reference configuration[111].

dxi =
∂xi
∂XK

· dXK = ∇kxi · dXK = FiKdXK (2.7)
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where we have applied index notation, subscripts i and K to designate the line element

vectors in the current and reference configurations, respectively. From Eq (2.7) and

using the definition of displacement in the current configuration, Eq (2.4), we can

define the rank-2 tensor deformation gradient, F as

FiK =
∂xi
∂XK

= δiK + ui,K (2.8)

where the last term ui,K designates the derivative of the displacement in the current

configuration with respect to the reference configuration [82].

The deformation gradient allows us to find the deformation in the reference con-

figuration as

XK,i = F−1iK =
∂XK

∂xi
= δKi + uK,i (2.9)

where we have applied Eq (2.3) for the definition of the displacement. The inversion

of the deformation gradient is always possible due to the axiom of continuity [82].

This axiom takes the mathematical form∣∣∣∣ ∂xi∂XK

∣∣∣∣ 6= 0 (2.10)

from which the obvious extension is

det (FiK) = J 6= 0 (2.11)

where J is termed the Jacobian.

We recognize that a deformation can be generalized as a combination of a linear

stretching motion and a rotation movement. The stretching movement of a material
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point from its original position occurs as a translation [111] while rotation describes

an angular change of position, usually with respect to the coordinate system origin

[22]. These two motions are intertwined, however, in such a fashion that we cannot

decouple them with an additive superposition relationship. The deformation gradient

can be multiplicatively decomposed via the Cauchy theorem for nonsingular tensors

into two rank-2 tensors, one representing the stretch and the other rotation motion.

F = R ·U = V ·R (2.12)

where R is the orthogonal rotation tensor and U and V are the symmetric right and

left stretch tensors, respectively [156]. We will return to this concept of stretch and

rotation tensors after discussing the strain measures, Section 2.1.2, to further describe

deformation.

2.1.2 Strain Measures

The concept of strain is used to describe the rate of displacement, that is, the

relative change in the displacement of the body. The rate of displacement of a solid

body has a significant impact on the solid’s stress response, ranging from the rapid

brittle fraction seen in explosions to the slow creep of glass windows over centuries.

Introduced to students first as a linear measure of change in length over the original

length [156], formally the rank-2 strain tensors are defined with the square of the line
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element length change. The squared line element length is given as

dS2 = dX · dX (2.13)

ds2 = dx · dx (2.14)

in either the reference configuration, Eq (2.13), or the current configuration, Eq (2.14).

The strain tensor, in the Lagrangian configuration, is defined as

ds2 − dS2 = 2dX · E · dX (2.15)

where E is the Lagrangian strain tensor [111].

The squares of the line elements can also be related to the deformation gradient

tensor, in the reference configuration

dS2 = dX · dX =
(
F−1 · dx

)
·
(
F−1 · dx

)
= dx ·

(
F−1

)T · (F−1) · dx (2.16)

and in the current configuration

ds2 = dx · dx = (F · dX) · (F · dX)

= dX · FT · F · dX
(2.17)

Noting the similarities between the formal definition of strain, Eq (2.15) and the

expressions for the squared line elements as a function of the deformation gradients,

Eqs (2.16) and (2.16), [26] and [58] introduced the following deformation tensors

B−1 =
(
F−1

)T · F−1 (2.18)

C = FT · F (2.19)
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where B and C are the left and right Cauchy-Green deformation tensors, respectively

[187]. The left and right Cauchy-Green deformation tensors can be used to find the

squares of the line element lengths by substituting Eqs (2.18) and (2.19) into Eqs

(2.16) and (2.17).

The Cauchy-Green deformation tensors enable the introduction of the Green-Saint

Venant and the Almansi-Hemel strain tensors. From the definitions of the strain

tensor in Eq (2.15) and the right Cauchy-Green deformation tensor in Eq (2.19), we

can write

ds2 − dS2 = dX ·C · dX− dXdX

= dX · (C− I) · dX

= 2dX · E · dX

(2.20)

such that the Lagrangian Green-Saint Venant strain tensor can be expressed as a

function of the right Cauchy-Green deformation tensor [168]

E =
1

2
(C− I) (2.21)

where I is the rank-2 identity tensor. In a similar fashion we can express the Eule-

rian Almansi-Hemel strain tensor as a function of the left Cauchy-Green deformation

tensor.

2dx · ε · dx = ds2 − dS2

= dxdx− dx ·B−1 · dx
(2.22)

ε =
1

2

(
I−B−1

)
(2.23)
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We note that by definition the Green-Saint Venant and Almansi-Hemel strain tensors

are symmetric from the multiplication of the deformation gradient tensors within the

right and left Cauchy-Green deformation tensor definitions.

The Lagrangian strain tensor, Eq (2.21), enables us to calculate the strain with

respect to the reference configuration as a function of the deformation gradient. This

capability is necessary for the crystal plasticity formulation we will discussion in

Section 2.3.

Small Strain Definition

In passing we mention the specialized case of small strain. Expressing the La-

grangian strain tensor, Eq (2.21), as a function of the deformation gradient and

applying the definition of the deformation gradient as a function of displacement, Eq

(2.8), we arrive at the expression for strain [82]

EKL =
1

2
(CKL − IKL) =

1

2

(
F T
KiFiL − IKL

)
=

1

2
[(δiK + ui,K) (δiL + ui,L)− δKL]

=
1

2
[uK,L + uL,K + um,Kum,L]

(2.24)

The small strain assumption applied in this case is

|ui,K | << 1 (2.25)
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such that the squared term in Eq (2.24) is negligible [22]. The conventional small

strain tensor is given as [168]:

E =
1

2
(u∇+∇u) (2.26)

Additionally in the case of small strain we assume that no rotation occurs as part of

the deformation. Mathematically we express this assumption by setting the rotation

tensor from Eq (2.12) equal to the rank-2 identity tensor.

Velocity Gradient

As we have defined a rate of displacement tensor, we can also define a rate tensor

for the deformation gradient. This deformation gradient rate tensor is termed the

velocity gradient. The definition of the velocity gradient relies on the concept of the

material derivative. Also termed the spatial gradient of velocity [111]

L = gradv (2.27)

the velocity gradient is related to the material derivative of the deformation gradient

[82]

Ḟ = L · F (2.28)

Similar to the deformation gradient, the velocity gradient may be decomposed into a

stretching rate tensor, D and the spin tensor, W as

L = D + W (2.29)
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where D is symmetric and W is skew-symmetric [111]. In the crystal plasticity

formulation, which we will introduce in Section 2.3, we will deal directly with the

velocity gradient tensor.

With the deformation gradient, strain, and velocity gradient tensors defined to

describe the relative shape change of the solid body, we proceed to discuss the con-

nection between stress and strain know as the constitutive equations.

2.1.3 Elastic Constitutive Equations

Constitutive equations are mathematical relationships to connect the stress and

strain behavior of a material. Ideally based in the physics of the material under

study, these equations range from simplified linear and fully recoverable, or elastic,

responses to complex nonlinear models for viscoelasticity and plasticity [168]. Consti-

tutive equations cannot represent the individual atom behaviors within a continuum

formulation and are therefore descriptions of an average for a statistically uniform

material [22]. For this reason the crystal plasticity constitutive equations we will

discuss in Section 2.3 are cast in terms of dislocation densities instead of individual

dislocations. In this section, to illustrate the constraints on all constitutive equations,

we will focus on the well-known generalized Hooke’s Law elastic constitutive model.
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Constitutive equations must follow the requirements [22]:

1. Obey the restrictions imposed by the first and second laws of thermodynamics,

2. Satisfy the condition of objectivity.

After discussing the restrictions placed on constitutive equations by these laws of ther-

modynamics, we will introduce the the objectivity requirement on the stress tensor

produced by the constitutive equation. We will conclude the chapter with a discussion

of the stress power concept for a linearized elastic general Hooke’s law constitutive

equation. A discussion of the material symmetries which reduce the number of inde-

pendent constants in this constitutive elasticity tensor will follow. In this section we

will make use of two stress measures, T, the Cauchy stress on the current configura-

tion and S, the second Piola-Kirchhoff stress on the reference configuration. These

two rank-2 stress measures will be formally introduced in Section 2.1.4, including the

symmetric nature which we will employ in this section.

Restrictions from the Laws of Thermodynamics

The first law of thermodynamics states the conservation of energy; that is, the

total energy of a system must equal the input power and the heat input rate [111].

In continuum mechanics the power input is the rate at which external applied loads,

tractions, and body forces do work on the body. We will utilize this concept in our

discussion on internal stress power, Section 2.1.3. Formally, the nonpolar energy
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balance equation implied by the first law of thermodynamics is

ρ
u

t
= TijDij + ρr − ∂qj

∂xj
(2.30)

where u is the specific internal energy, T is the Cauchy stress measure which is related

to surface tractions as tj = Tjini, D is the stretching rate tensor from Eq (2.29), ρ

is the material density, r is the internal distributed heat source, and q is the heat

flux [111]. The second law of thermodynamics states that entropy cannot be reduced:

for a reversible process, such as elastic deformation, the entropy is constant, and in

an irreversible process, such as plastic deformation, the entropy may only increase

[21]. The Clausius-Duhem inequality recasts the second law of thermodynamics for

continuum mechanics

ds

dt
≥ r

θ
− 1

ρ
∇ · q

θ
(2.31)

where s is the entropy and θ is the temperature [111]. With some rearranging and

using Eq (2.30) the inequality can be expressed as a function of the stress measure

and the stretching tensor

T : D− ρ
(
∂u

dt
− θds

dt

)
≥ 0 (2.32)

Using the concept of Helmholtz free energy

Ψ = u− θs (2.33)
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the Clausius-Duhem inequality becomes [22]

T : D− ρ
(
∂Ψ

dt
− s∂θ

∂t

)
≥ 0 (2.34)

This form of the inequality can provide a more straightforward path to determine if a

constitutive equation obeys the restrictions from the second law of thermodynamics.

Stress Objectivity Constraints

The second requirement for a constitutive equation is that the calculated stress

measure does not change as the material reference frame changes, that is, the stress

tensor must be material frame-indifferent, or objective, measures. To be frame indif-

ferent, a second order tensor must transform under changes of reference frame:

A∗ = Q ·A ·QT (2.35)

where Q is a proper orthogonal tensor which characterizes the relative rotations

between frames of reference [168]. For a constitutive equation relating the Cauchy

stress, T, to the deformation gradient,

T = f (F) (2.36)

to be considered material frame-indifferent it must satisfy

f (Q · F) = Q · f (F) ·QT = Q ·T ·QT (2.37)

for all proper orthogonal Q [168], where the objective stress measure tensor is

T∗ = Q ·T ·QT (2.38)
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Elastic Stiffness Tensor

The generalized Hooke’s law for elastic materials is perhaps the best-known ex-

ample of a constitutive law. Describing a fully reversible process, this constitutive

law satisfies the thermodynamic requirements by exactly conserving entropy, see Eq

(2.34), by assuming the stress tensor is a linear function of strain

Tij = Cijklεkl (2.39)

where C is known as the rank-4 stiffness tensor [156]. Note that we have employed

the linearized small strain in the current configuration, ε, here, which is symmetric

by definition similar to the linearized Lagrangian strain, Eq (2.26). Exploiting the

symmetries of the stress and strain tensors, the number of independent components

of the stiffness tensor can be reduced:

Tij = Tji ⇒ Cijkl = Cjikl

εkl = εlk ⇒ Cijkl = Cijlk

(2.40)

The symmetry in the strain tensor means that the skew-symmetric component of the

stiffness tensor is arbitrary [168]. These symmetries, Eq (2.40), reduce the number

of independent stiffness tensor components from 81 to 36. We further reduce the

number of independent stiffness tensor components with the concept of strain energy

density. The strain energy density for a hyperelastic material is defined as[168]:

U(ε) =

∫ ε

0

T : dε⇒ Tij =
∂U(ε)

∂εij
(2.41)
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which is path independent and related to the Helmholtz free energy we introduced in

Eq (2.33). Differentiating the strain energy density expression yields

∂2U(ε)

∂εijεkl
=
∂2U(ε)

∂εklεij
= Cijkl (2.42)

Since the order of differential is arbitrary, the stiffness tensor must have symmetry in

the first and last pairs of indices:

Cijkl = Cklij (2.43)

which gives only 21 independent tensor components [111, 168, 156].

Many materials, including the cubic crystals which are the subject of this work,

exhibit additional symmetries; for these materials the stiffness tensor is further sim-

plified. Cubic crystal materials, including iron and nickel, are orthotropic. The three

orthogonal planes of symmetry decouple the shear stress, that is the nondiagonal

components of the stress tensor, from the normal strain components, which lie on the

diagonal, such that only 9 components of the stiffness tensor are independent [168].

In the elastic-plastic constitutive relationships we will apply in the modeling of the

crystals, Section 2.3, we will use this orthotropic material symmetry stiffness tensor.

Work Conjugate Pairs and Stress Power

In order to write a constitutive equation, we must ensure that we are relating the

appropriate strain and stress measures. The concept of work done on a body by a

stress measure [168, 1], provides a method to determine appropriate stress and strain
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measures through work conjugate pairs [22]. Oftentimes the rate of work done by the

stress is expressed with the Cauchy stress measure T and the stretch rate tensor D

which we have used previously in Section 2.1.3.

Here we wish to determine the work conjugate to the Lagrangian strain rate tensor,

Ė, for use in writing constitutive equations on the reference configuration as is done

in our crystal plasticity formulation, Section 2.3. From the definition of stress power

given by [111] or the work done by external forces [168]

Pint =

∫
A

tividA+

∫
V

ρbividV (2.44)

where t is the traction associated with the Cauchy stress measure and b is a body

force. We can write this integral on the underformed configuration, introducing the

second Piola-Kirchhoff stress measure, S. Through the application of the equations

of motion and the symmetry of the second Piola-Kirchhoff stress measure, discussed

in Section 2.1.4, we arrive at the expression

∫
Vo

SiKĖiKdVo +

∫
Vo

1

2
vividVo = 0 (2.45)

which demonstrates that the second Piola-Kirchhoff stress and the Lagrangian strain

rate tensors are work conjugates. Thus, we can write our crystal plasticity constitutive

relationships using these two measures.
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2.1.4 Stress Measures and Equations of Motion

The Rank-2 tensor stress measures are used within continuum mechanics to char-

acterize the internal forces acting on a body at a material point. In order to describe

these internal forces we must first examine the external forces acting on the body

before defining the stress measures. Once defined, the form of the stress tensors is

restricted by the equations of motion. The equations of motion also provide the gov-

erning partial differential equation which we will solve with a finite element method

simulation, Section 2.4.

The external forces acting on a body can be classified into two categories: body

forces and surface forces [111]. Body forces are long-range action or loads applied to

every particle in the solid body, such as gravity [156]. Surface forces, on the other

hand, act only on a portion of the material points which lie on the body’s surface,

such as contact forces [168]. A surface force per unit area is termed a traction [111].

The mathematical representation of a body force, b, acting on a deformed body in

the current configuration is

B =

∫
V

ρbdV (2.46)

and the mathematical representation of a surface force acting on the deformed body

surface is

T =

∫
S

tda (2.47)
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where t is the traction vector [111]. Tractions can be characterized by the direction in

which they interact with the surface. The surface at a material point can be described

by n̂, the unit outward normal at the point [168]. A traction, or the component of

the traction, which act on the surface parallel to this unit normal vector is termed the

normal traction. The other components, which act perpendicular to the unit normal

vector, are termed shear tractions. We will make use of shear forces acting along a

surface in the formulation of the crystal plasticity constitutive model, which we will

discuss in Section 2.3.

The Euler-Cauchy stress principle [82] states that tractions exist across every

internal surface of a body and that the equations of motion, Section 2.1.4, apply both

to the whole body and any interior surface [82]. These internal tractions are defined

on an infinitesimal internal surface element, ∆a, which also has a unit normal vector,

n̂. Employing Newton’s third law, which implies that a traction vector acting on one

side of a material point is equal and opposite to the traction vector acting on the

other side of the surface element, we introduce the idea of the Cauchy tetrahedron in

the current configuration [168]. About a single material point we draw a tetrahedron

whose sides and base align with the planes of the coordinate system and whose fourth

face does not pass through the material point of interest. The traction vector normal

to this fourth surface can be represented as the sum of the tractions acting along the

unit normal vectors of the base and sides. Taking the limit of the tetrahedron until
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the tetrahedron collapses to the point such that we can express the traction as [26]

t = t1ê1 + t2ê2 + t3ê3 (2.48)

where êi are the unit vectors of the coordinate system. With the Euler-Cauchy stress

principle, we define the Cauchy stress as [187]

ti = njTij (2.49)

where T is the Cauchy stress, defined on the current configuration which we utilized in

Section 2.1.3. Similar to the convention used for the tractions, the normal components

of the Cauchy stress tensor are those which lie along the diagonal of the tensor and

the shear components are the non-diagonal components.

Second Piola-Kirchhoff Stress

As we saw in the discussion of Constitutive Equations we find it useful to define a

stress measure with respect to the reference configuration. Both the first and second

Piola-Kirchhoff stress measures are defined on the reference configuration, although

only the second Piola-Kirchhoff stress tensor is symmetric [82].

The second Piola-Kirchhoff stress tensor, S, can be defined from the Cauchy stress

tensor with the help of the deformation gradient [111] as

S = J · F−1 ·T ·
(
F−1

)T
(2.50)

where J is the determinant of the deformation gradient, known as the Jacobian [82].

Note the use of the inverse deformation gradient to relate the current configuration
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frame back to the reference frame as we explored in the definition of the deformation

gradient, Section 2.1.1.

Equations of Motion

The behavior and characteristics of the stress tensor are restricted by local con-

servation equilibrium equations: these two equations are know as the equations of

motion.

The first equation of motion is the conservation of linear momentum: the time

rate change of the total momentum for a given set of material points equals the sum of

the internal tractions and body forces acting on that point set [111]. The equilibrium

mathematical expression is

∫
S

tidS +

∫
V

ρbidV =
d

dt

∫
V

ρvidV (2.51)

where we have applied the continuity equation

dρ

dt
= ρ

dvi
dxi

(2.52)

to the right hand side of Eq (2.51). Using the definition of the Cauchy stress, Eq

(2.49), we can rewrite the linear moment balance as

∫
S

TijnjdS +

∫
V

ρbidV =
d

dt

∫
V

ρvidV (2.53)

After applying the divergence theorem to transform the first term in Eq (2.53) to

the volume integral, we obtain Cauchy’s first law of motion [26, 111] for an arbitrary
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volume

∂Tji
∂xj

+ ρbj = ρ
dvi
dt

(2.54)

This equation is the governing equation for the quasi-static finite element method

simulations we will perform here is a form of Newton’s third law of motion [22]. In

the absence of body forces and with the assumption of static equilibrium, Eq (2.54),

reduces to the well-known stress divergence equation:

∇ ·T = 0 (2.55)

The second equation of motion we will discuss here is the balance of angular

momentum. Similar in form to the balance of linear momentum, the angular moment

balance states that the sum of the moments of the forces acting on a set of material

points must equal the total moment of momentum [111]. Adding a moment arm,

r, to each term of the linear momentum balance, Eq (2.51), results in the angular

momentum balance expression

∫
S

(r× t)dS +

∫
V

ρ(r× b)dV =
d

dt

∫
V

ρ(r× v)dV (2.56)

With the deformation of the cross product, after applying the Cauchy stress definition

and the divergence theorem as before [22], we can write the balance as

∫
V

ermn

[
∂(xmTjm
∂xj

+ xmρbn

]
dV =

∫
v

ermn
d

dt
(xmvn) dV (2.57)

Applying the chain rule to the derivative terms, canceling the terms, and applying
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the balance of linear momentum, we arrive at the conclusion

Tmn = Tnm (2.58)

for an arbitrary volume [111]. Thus, the stress tensor is required to be symmetric to

satisfy the angular moment balance [82, 22, 156].

We note that although these equations of motion have been demonstrated for

the Cauchy stress, they also hold for the other stress measures, including the second

Piola-Kirchhoff stress.

These sections have given an overview of the fundamental solid mechanics prin-

ciples. While the deformation, strain, and stress principles for solid mechanics are

established, the development of constitutive equations is a current and exciting area of

research. With an understanding of these principles in hand, we will briefly overview

the physical structure of metallic crystals before discussing in detail the constitutive

laws developed in this work for crystal plasticity.

2.2 Crystalline Structure of Metals

This thesis work advances the field by introducing and applying a physically based

model for the deformation of two metal materials used within nuclear power plant

reactor pressure vessels: the terms in the crystal plasticity constitutive equations are

rooted in the physical mechanisms of the metal microstructure evolution. In order to
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discuss these constitutive equations, in Section 2.3, we must first establish a basis of

the physical structure of crystalline materials.

We begin our discussion of the microstructure of metals with an overview of the

ideal perfect crystal structure. Since both of the metals we study in this work, α-iron

and nickel-based alloys, have a general cubic crystal structure, we can simplify our

discussion of the ideal atomic arrangement within the unit crystal structure cube.

We will then broaden our microstructure overview to include common crystal defects,

including dislocations which are know as carriers of plasticity. After a discussion of the

evolution and interactions of crystal defects within a metal grain, we will conclude this

section with a concise review of the impact of lattice curvature on the microstructure,

particularly in regards to the grain boundaries. We conclude this section with a

discussion of the evolution of dislocations in the microstructure, including interaction

of the dislocations with other crystal defects.

2.2.1 Ideal Unit Crystal Structure

Crystal structure is defined as the arrangement of atoms in a repeatable, periodic

pattern [69]. The structure of a metal crystal governs how the microstructure will

evolve as the metal deforms [82]. The metals of interest in this work are both of the

cubic type, with each side of the cube having a length a. The cubic crystal has an
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atom at each corner of the unit cell. The two metals we will discuss in this work,

α-iron and nickel, differ in the number and location of the additional atoms within

the cubic unit cell. The crystal structure for α-iron includes a single additional atom,

centered in the body of the unit cell. This structure type is termed Body Centered

Cubic (BCC) [64]. Nickel, on the other hand, has a Face Centered Cubic (FCC)

structure with an additional atom in the center of each face of the unit cell cube [69].

A collection of unit cubes is termed the crystal lattice [64], and here the term crystal

lattice is often used to refer to the larger crystalline structure within a metal.

The concept of Miller indices is used to describe the planes and directions withing

a cubic crystal unit cell. These descriptions are necessary to characterize the mo-

tion of dislocations, which move along slip planes in slip directions. We will discuss

dislocations and their movement in Section 2.2.3.

The Miller indices for a plane are given as the reciprocals of the intersection of

the plane with the unit cube reduced to the smallest integer in the ratio [69]. A

plane which intersects the unit cell cube at
(
1
2
, 1
2
, 1
)

has the Miller indices of (112).

A direction is described in Miller indices by a vector which is parallel to the direction

and intersects the origin of the unit cube. The Miller indices of the direction are the

three smallest integers in the ratio of the components of the vector resolved on the

lengths of the unit cell [69]. A direction parallel to the vector which exits the unit

cube at (1, 1, 1) has the Miller indices of [111]. A negative Miller index is indicated
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by a line drawn over the top of the number. We note that the Miller indices of a

plane correspond to the vector normal to the plane [69]. By convention the Miller

indices for planes are designated with parentheses, (), while directions are denoted

with square brackets, [] [69].

Because of the symmetric nature of the unit FCC and BCC cubes, multiple planes

and multiple directions have the same crystallographic type and are grouped into

’families’ [64]. The planes (111̄), (11̄1̄), (1̄11), and (111) all belong to the family

{111}. Again by convention, the families of planes are denoted with curly braces,

{} and families of directions are marked with angle brackets <> [69]. The concept

of families simplifies the direction of dislocation slip systems by acknowledging the

innate symmetry of the cubic crystal structure.

This concept of Miller indices for planes and directions affords us the ability to

characterize the two cubic structures of interest in this work. In the BCC unit cell,

the < 111 > direction is the closest packed direction, while in the FCC unit cube

the closest packed direction is < 110 > [69]. The closest packed directions within the

two unit cells correspond to the direction of dislocation slip [42] and are examples of

how the structure of the crystal dictates the deformation behavior of metals. In the

next section we will briefly discuss some of the common defects that may be present

in α-iron and nickel alloys.
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2.2.2 Crystal Lattice Defects

Defects in the crystal lattice are caused by displaced or missing atoms from the

lattice sites defined by the unit cell. Hull and Bacon introduce four types of defects:

point, line, plane, and volume defects [69]. We will discuss common defects in α-iron

and nickel from each of these defect types and will introduce the basics of the defect

interactions. We will expand on defect interactions and evolution within Section 2.2.3

before introducing mathematical models for these physical mechanisms in Section 2.3.

Point Defects

Point defects are created when a single atom is displaced from the lattice site in a

perfect crystal. The two types of point defects are vacancies and interstitials: vacancy

is the name of the empty lattice site from whence the displaced atom originated and

interstitial is the name given to the displaced atom itself [69]. These point defects

occur in pairs, termed Frankel pairs, although vacancies and interstitials have different

rates of absorption into larger defects [194]. Vacancies can also occur in vacancy

pairs of opposite sign [69]. The production of point defects in Frenkel pairs is often

associated with exposure to radiation, as in a nuclear reactor pressure vessel when

nuclear fission products knock atoms out of the lattice sites [194].
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Dislocations as Line Defects

Dislocations, which we have already mentioned briefly, are line defects. Disloca-

tions are ideally characterized as either edge or screw dislocations: edge dislocations

can be described as an extra half plane inserted into the crystal lattice while screw

dislocations have a single surface helicoid shape [69]. In both cases, the dislocation

is a line defect in the crystal lattice that defines the boundary between the slipped

and unslipped regions of the crystal [64]. The term ’slipped’ is used to indicate that

portion of the crystal lattice has been deformed by the passage of a dislocation.

Dislocations are characterized by a Burgers vector. The Burgers vector, b, is

the length required to complete the Burgers circuit, an atom-to-atom closed circuit

path in a perfect crystal [64]. Around a single dislocation, the closure failure of the

Burgers circuit from a perfect crystal lattice is the Burgers vector [69]. A Burgers

vector is defined from a clockwise Burgers circuit, and the Burgers vector of a perfect

dislocation corresponds to the shortest lattice transition vector between two atoms

[69]. Thus the Burgers vector for a perfect dislocation lies in the closest-packed

direction of the unit crystal cell. In a BCC material the Burgers vector is therefore

b = 1
2
[111] while in a FCC material the Burgers vector is b = 1

2
[110] [65]. The 1

2
factor

in each of the Burgers vector definitions is a result of the energy distribution required

to shift a plane of atoms over one lattice site: the maximum energy required occurs

at the halfway point between the two lattice points or at half of the lattice parameter,
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a, length [69].

The Burgers vector of an ideal edge dislocation is normal to the line of the disloca-

tion itself, such that the edge dislocation moves in the same direction as the Burgers

vector [64]. The ideal screw dislocation, on the other hand, has a Burgers vector

parallel to the line of the dislocation [65] and normal to the direction of motion of

the screw dislocation.

Dislocations cannot end within a crystal and instead either terminate in other

dislocations and grain boundaries or form loops within the crystal [69]. As such, the

concepts of edge and screw dislocations are idealizations, and most dislocations exist

with a mixed edge and screw character. Separating the two types of dislocations

allows for a better study of individual behaviors in the idealized state.

Regardless of the dislocation type, the dislocation line and the Burgers vector

are contained within the same plane: we term this plane the glide plane [65]. This

glide plane is denoted with the Miller indices for the plane normal. Together with

the direction vector, traditionally represented also in Miller indices, the glide, or slip,

planes describe where in a crystal lattice dislocations can move. We will return to this

concept of plane and direction pairs when we discuss dislocation motion in Section

2.2.3.
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Planar Defects

Planar defects within a crystal are a disruption in the stacking order of atoms

within the crystal lattice [69], when we consider the crystal lattice as a series of unit

cell cubes stacked on top of each other. The layers of the close packed planes are

stacked in a repeating order, e.g. ABCABCA in FCC materials. A disruption in this

repeating order, e.g. ABCABCBACBA, is termed a stacking fault [65]. The tendency

of the metal to resist stacking faults is known as the stacking fault energy [69].

Metals with low stacking fault energies, like copper and FCC alloys, tend to have

a larger presence of partial dislocations which have a spread dislocation core [65, 69].

Conversely materials with a high stacking fault have a more compact dislocation core.

A high concentration of partial dislocations can lead to twinning behavior [64, 76, 110].

While we will discuss twinning later in Section 2.2.3, the occurrence of twinning is

marked by the presence of a twin boundary, another type of planar defect. A twin

boundary is defined by a plane about which the parent and twinned crystal lattices

mirror each other [69].

The final type of planar defect we will discuss here is the boundary between two

crystalline grains. Up to now, our discussion has remained within a single lattice

orientation; however, engineering scale metal structural components are composed of

many grains. Each grain has a lattice orientation different from its neighbors, and

the grain boundary plane is characterized by a misorientation angle [69].
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Although the grain boundary region itself is narrow, the impact of the grain

boundary on the behavior of dislocations can be significant. Because of the change

in lattice orientations, dislocations cannot directly traverse the grain boundary in the

same manner as they travel across the crystal within the grain. Furthermore, even

approaching the grain boundary is energetically difficult for dislocations because the

stress fields near the grain boundary are high [65]. Dislocations within the crystal

lattice form pile-up structures, akin to a traffic jams, in response to the barrier of

the grain boundary, increasing the resistance strength to dislocation motion of the

crystal lattice [82]. The degree of resistance to dislocation motion provided by the

grain boundary depends on the degree of misorientation, or the curvature of the

lattice across the grain boundary. In general metallic materials with smaller grains

have higher strength than metals with larger grains; this relationship is captured on

the engineering scale by the Hall-Petch relation [148, 62]. We will dicuss the effect of

grain boundaries in the context of modelling lattice curvature in Section 2.3.5.

Volumetric Defects

The final class of crystalline defects we will discuss here is the volume defect

type. As the name suggests, these defects have a 3D form and are often the result

of point defects coalescing. There are many different types of volumetric defects,

yet in this work will will mention only four: self-interstitial atom (SIA) dislocation

loops, stacking fault tetrahedrons (SFTs), voids, and ordered precipitates. We will
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also discuss these defects only withing the context of irradiation damage even though

these defects can occur under other circumstances.

When a fission product knocks an atom in the metal crystal lattice out of place,

it causes a displacement cascade which produces a group of vacancies surround by a

shell of interstitial atoms [194]. Either group may collapse into a region of a stacking

fault [69]. In-cascade clusters of point defects may also occur during the cascade

event [194], and the structures formed by the clusters depend heavily on the crystal

structure [143, 173].

In a BCC material such as α-iron self interstitials clusters into crowdions which

form SIA loops with Burgers vectors along the < 111 > or < 100 > directions

[194, 17]. SIA loops, which are considered to be the most significant irradiation defect

in α-iron [54, 167] interact as a weak barrier to mobile dislocations. Since these SIA

loops have a 3D character, these defects affect the movement of dislocations within

a sphere of influence [114]. Interactions with mobile dislocations cause the SIA loops

to unfault [17, 194]. As a dislocation loop, the majority of SIA loops are mobile, yet

the larger SIA loops containing more than a few interstitial atoms rely on thermal

diffusion to glide in one dimension and are therefore relatively slow [194]. Clusters

of vacancies can also form loops in α-iron, but these vacancy loops are unstable and

unfault after a critical number of vacancies join the loop [143].

In FCC materials, particularly those with low stacking fault energies such as
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nickel alloys, clusters of vacancies and Frank loops will form three partial Shockely

dislocations. These partial dislocations travel on the three {111} type planes to

intersect and thereby form a 3D SFT [194, 69]. SFTs are important irradiation

defects in FCC materials, comprising 25 to 50 percent of all the irradiation clusters

in nickel [14]. SFTs are immobile defects, and dislocations interact with these defects

by cutting through the SFT defect [194].

Voids occur in both BCC and FCC materials and are formed by the coalescence of

vacancies [194]. Generally voids are considered strong barriers to dislocation motion,

and a dislocation must either cut through or bow around a void [139]. Precipitates

are similar to voids in that they are 3D clusters but are composed of either solute

atoms or different phases of the metal or alloy of interest. The higher levels of lattice

disturbance characteristic of a radiation environment allows for the formation of these

phases or solute atom collections [194]. Within nickel-based alloys, long-range ordered

(LRO) γ′ precipitates form under aging and radiation conditions. Similar to voids,

precipitates act as strong barrier obstacles for dislocation motion [194], and either are

sheared by dislocations or act to pin dislocations and prevent dislocation movement.

The process of cutting through a precipitate is made more difficult by the presence

of any lattice incoherency between the matrix crystal lattice and the lattice of the

precipitate.

As we’ve alluded to in this section, the impact of these different types of crystal
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lattice defects is most strongly felt when the dislocations move to enable plastic

deformation of the metal.

2.2.3 Dislocations and Plasticity

Metals deform plastically in an incompressible manner; plastic deformation does

not create a volume change [82]. Furthermore plastic deformation occurs only in

response to shear loading and not to hydrostatic loading [42]. This sensitivity to only

shear loading is a direct result of how dislocations move within the crystal lattice

of a metal. Hence dislocations are often termed carriers of plasticity. Dislocations

are the lattice defect that [179, 151, 141] all independently established is needed to

explain why typical metal crystals plastically slip at much lower stresses than are

theoretically predicted and measured for an ideal perfect crystal [64].

Mathematically, this relationship between plastic strain and dislocation motion

was formalized in the Orowan relation. The Orowan relation establishes the rate of

plastic slip, γ̇P , in recognition of the shear-only plastic deformation of the metals, as

a function of the total rate of dislocation motion [141]:

γ̇P = ρmobilebv (2.59)

where ρmobile is the density of mobile dislocations, b is the Burgers vector, and v is

the velocity of the mobile dislocations. This relationship, however, is written only for
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a set of dislocations moving in the same slip direction on the same glide plane. Recall

in Section 2.2.2 that we introduced the concept of slip planes and slip directions.

Dislocations move with two mechanisms: conservative glide and nonconservative

climb. Dislocation glide occurs in the the glide, or slip plane, and for edge dislocations,

in the slip direction. Therefore, the combination of a slip plane, (ŝ), and a slip

direction, (m̂) is termed a slip system [65]. In a BCC material, microscopic evidence

suggests that the slip plane famlies are {110} and {112} [69] and the closed packed

slip directions are < 111 >. While only the {110} slip planes are active at very low

temperatures, at midrange temperatures BCC materials like α-iron have 24 potential

active slip systems, as shown in Table 2.1. At higher temperatures, an additional 24

{123} slip planes become active [145]. In an FCC material, only the {111} planes

are slip planes, and the closed packed slip direction, < 110 >, yields a total of 12 slip

systems, Table 2.2.

The velocity of the dislocation becomes nonzero when a sufficiently large shear

force is placed on the dislocations. In 1959 Johnston and Gilman established the

phemonological relationship between dislocation velocity and the applied shear stress

through a series of careful experimental measurements[73]:

v ∝
(
τ

τo

)n
(2.60)

where τ is the applied shear stress on the slip system in the slip direction, τo is the

resistance of the crystal lattice to dislocation motion, and n is an exponent dependent
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Table 2.1: Glide slip systems in BCC crystals

Slip Plane Slip Direction Slip Plane Slip Direction

(011) [11̄1] (112) [111̄]

(011) [111̄] (1̄12) [11̄1]

(101) [1̄11] (11̄2) [1̄11]

(101) [111̄] (112̄) [111]

(110) [1̄11] (121) [11̄1]

(110) [11̄1] (1̄21) [111̄]

(01̄1) [111] (12̄1) [111]

(01̄1) [1̄11] (121̄) [1̄11]

(101̄) [111] (211) [1̄11]

(101̄) [11̄1] (2̄11) [111]

(1̄10) [111] (21̄1) [111̄]

(1̄10) [111̄] (211̄) [11̄1]

on the material. The applied shear stress, τ , causes dislocation motion when it reaches

the value of the critical resolved shear stress [69, 11]. The applied shear stress is

resolved from a Rank-2 stress tensor, like the Cauchy or second Piola-Kirchhoff stress

tensors from Section 2.1.4, by the Schmid factor to the slip plane in the slip direction:

τ = T : M = T : ŝ⊗ m̂ (2.61)
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Table 2.2: Glide slip systems in FCC crystals

Slip Plane Slip Direction Slip Plane Slip Direction

(111) [1̄01] (11̄1) [011]

(111) [1̄10] (11̄1) [110]

(111) [01̄1] (11̄1) [1̄01]

(1̄11) [101] (1̄1̄1) [011]

(1̄11) [110] (1̄1̄1) [1̄10]

(1̄11) [01̄1] (1̄1̄1) [101]

The denominator of Eq 2.60, τo is the Peierls-Nabarro stress. Also referred to as

the lattice friction, the Peierls-Nabarro stress is the amount of applied shear stress

required to move the atoms in the dislocation half a lattice parameter, or half the

distance between two atom lattice site positions [69].

Cross slip is a significant component of dislocation motion in BCC materials [152].

In cross slip, screw dislocations move from one slip plane to another with the same

slip direction [69]. Slip, or glide, planes with the same direction are termed cross

slip families; these families are given in Table 2.3 for BCC materials for medium

temperatures in which only the {110} and {112} slip planes are active. At higher

temperatures, when the {123} slip planes becomes active in BCC materials, and these

planes also contribute to the cross slip families. The contribution to cross slip families
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from the {123} planes are not listed in Table 2.3. FCC materials only have two slip

planes per slip direction.

Table 2.3: Cross slip families in BCC crystals

Slip Plane Slip Direction Slip Plane Slip Direction

(011) [11̄1] (101) [1̄11]

(110) [11̄1] (110) [1̄11]

(101̄) [11̄1] (01̄1) [1̄11]

(1̄12) [11̄1] (11̄2) [1̄11]

(121) [11̄1] (121̄) [1̄11]

(211̄) [11̄1] (211) [1̄11]

Slip Plane Slip Direction Slip Plane Slip Direction

(011) [111̄] (01̄1) [111]

(101) [111̄] (101̄) [111]

(1̄10) [111̄] (1̄10) [111]

(112) [111̄] (112̄) [111]

(1̄21) [111̄] (12̄1) [111]

(21̄1) [111̄] (2̄11) [111]



65

In addition to dislocation glide, dislocations may also move by climb. Climb

is known as a nonconservative motion because it relies on the thermal diffusion of

vacancies to enable the dislocation to travel out of the glide plane in a direction

perpendicular to the glide plane [69].

Defect Hardening of the Crystal

Defects in the metal crystal microstructure impede the motion of dislocations by

disrupting the crystal lattice through which the dislocations travel. Defects can also

pin a dislocation to prevent it from moving; we term these dislocations which cannot

move past an obstacle immobile dislocations. Sometimes, under additional applied

shear stress, these dislocations can become mobile again. We will discuss the coupling

between mobile and immobile dislocations in greater detail in Section 2.3.2.

Generally, defects in the crystal impede but do not prevent the motion of disloca-

tions. Other dislocations on different slip systems can act as an obstacle to a mobile

dislocation; this hardening due to the presence of other dislocations is termed forest

hardening [69]. As a result of the presence of these defects, an increased applied shear

stress must be placed on the dislocation to overcome these defect obstacles. Increased

numbers of microstructure defects naturally leads to higher shear stress requirement

to produce dislocation motion; the increased resistance of the crystal to dislocation

motion is termed hardening or strengthening [64]. Having introduced the different

types of dislocation defects interactions in this section, we will continue the discussion
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of the mathematical models for these interactions in Section 2.3.4.

Dislocation Generation

The evolution of the microstructure involves generation of new dislocations in

addition to the interaction of dislocations with other defects as we have previously

discussed. A common dislocation generation mechanism is the Frank-Read source

[69]. In a Frank-Read source, a dislocation segment is pinned by other defects and

bows out under applied shear stress. The pinned segment continues to bow out

until the dislocation segment comes into contact with itself on the opposite side of

the pins [64], as shown in Figure 2.3. At this point the two curved components of

(a)
(b)

(c)

(d)

Figure 2.3: The Frank-Read dislocation generation source, line (a), operates under an

applied shear stress which causes the pinned dislocation to bow out, line (b), until the line

at (c) is minimized. At that point, a new dislocation loop, line (d), is released and the

dislocation source, line (a) is restored.
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the dislocation segment have opposite character from each other. When these two

segments come into contact, they annihilate and release a perfect dislocation loop

and a dislocation segment pinned as before [69]. Continued applied shear stress will

grow the new dislocation loop and will enable the Frank-Read dislocation segment

source to generate yet another dislocation loop.

2.3 Crystal Plasticity Framework

The mathematical path connecting the motion and interactions of metallic crystal

dislocations and defects is not straightforward. Three different researchers, marking

the start of research into how the microstructure of a metal crystal impacts the engi-

neering scale behavior, independently verified that the theoretical slip system strength

significantly overpredicts the observed strength of a crystalline metal [141, 151, 179].

Since then the field of crystal plasticity has developed from averaged single crystal

responses [180] to phenomenological expressions for dislocation evolution under stress

[85] and relations for lattice curvature [128] to complex nonlinear approaches that in-

clude assorted dislocation movement mechanisms which account for interactions with

other crystal defects [116, 161].
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2.3.1 Constitutive Equations for Plasticity

Following [11] our crystal plasticity model uses a multiplicative decomposition of

the deformation gradient into elastic and plastic components:

F = FeFp (2.62)

The change in the crystal shape due to dislocation motion is accounted for in the

plastic deformation gradient tensor, Fp, while the elastic deformation gradient tensor,

Fe, accounts for recoverable elastic stretch and rotations of the crystal lattice. The

evolution of the plastic deformation is given as

Ḟp = LpFp (2.63)

where Lp is the plastic velocity gradient. The plastic deformation gradient rate is used

to calculate the increment of the Lagrangian strain. The plastic velocity gradient is

defined as the sum of the slip increments from dislocation motion on all of the slip

systems [11].

Lp =
n∑

α=1

γ̇αsαo ⊗mα
o (2.64)

where γ̇α is the slip rate due to dislocation glide. Note that the slip direction and slip

plane normal unit vectors, so and mo, are defined in the reference configuration. This

relationship links the continuum framework to the constitutive models used in crystal

plasticity. The plastic dislocation glide slip on each slip system, γ̇(α), is connected to
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the behavior of the mobile dislocations through Orowan’s relation, Eq 2.59.

The evolution of the mobile dislocation rate is a constitutive expression, described

in 2.3.2 below. At the continuum crystal plasticity level, the dislocation glide velocity

is computed as a function of the applied shear stress on the slip system α and each slip

system strength. In this work, we apply a power law expression for the dislocation

glide velocity,

vαglide = vo

∣∣∣∣ταgα
∣∣∣∣1/m sign(τα) if |τα| ≥ gαo (2.65)

where vo is the initial dislocation velocity, τα is the applied resolved shear stress on

each slip system α, and gα is the slip system resistance or strength which is further

defined in Eq (2.70). The power law expression for dislocation glide velocity, while

simple and neglecting direct temperature dependence, offers significant robustness

over an enthaply flow type expression [28, 145]; the enthalpy flow velocity glide is

numerically sensitive to the parameter choices and requires additional numerical sta-

blization schemes [29]. As a consequence of the decision to use the slip direction and

plane normal unit vectors from the initial crystal orientation, Eq (2.64), the second

Piola-Kirchoff stress is used to determine the applied resolved shear stress.

τα = T : sαo ⊗mα
o (2.66)

The slip system resistance, gα in Eq (2.65), provides a measure of the strength of

each slip system to resist dislocation motion.
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2.3.2 Dislocation Evolution Equations

2.3.3 Dislocation Evolution

Our crystal plasticity model is based on the continuum dislocation dynamics

(CDD) framework, [101, 177], with separate terms used to describe each of the spe-

cific physical interaction mechanisms in the dislocation evolution rate terms. The

rate of the mobile dislocation evolution is fully coupled to the immobile dislocation

evolution rate. The mobile dislocation evolution is governed by six terms: each term

in the equation represents a specific physical dislocation-interaction mechanism.

ρ̇
(α)
mobile =ρ̇

(α)
generation − ρ̇

(α)
mobile−annihilation − ρ̇

(α)
locking + ρ̇

(α)
freed

+ ρ̇
(α)
cross−slip − ρ̇

(α)
immobile−annihilation

(2.67)

The mathematical relations for each of the terms in the general mobile dislocation

evolution expressions are given in Table 2.4.

Mobile dislocation generation is considered to occur from Frank-Read sources.

Dislocation annihilation of two dislocations of opposite sign can occur between two

mobile dislocations (second term in Eq. (2.67)) or between an immobile dislocation

and a mobile dislocation (sixth term in Eq. (2.67)). The annihilation interaction

among dislocations is assumed to occur only within a capture radius, Rc, which is de-

fined as a factor of the Burgers vector. The mobile dislocation evolution is coupled to

the immobile dislocation evolution rate through evolution terms for dislocation locks
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Table 2.4: Mathematical expressions for the six physically-based interaction mechanisms

used within the mobile dislocation evolution equation, Eq (2.67), and immobile dislocation

evolution equation, Eq (2.68). The six α coefficients are fit from dislocation dynamics

simulations [101], vglide is the dislocation glide velocity from Eq (2.65), Rc is the radius of

capture for annihilating dislocations of opposite sign, and linv is the inverse mean free glide

path.

Dislocation Interaction Mathematical Expression

Frank-Read generation ρ̇
(α)
generation = α1ρ

(α)
mobilevglidelinv

Mobile-mobile annihilation ρ̇
(α)
mobile−anhl = α2

(
ρ
(α)
mobile

)2
2Rcbvglide

Dislocation locking ρ̇
(α)
locking = α3ρ

(α)
mobilevglidelinv

Locked dislocations freed ρ̇
(α)
freed = α4ρ

(α)
imm

∣∣∣ τ (α)g(α)

∣∣∣2 vglidelinv
Cross slip ρ̇

(α)
cross−slip = α5ρ

(α)
cross−slippedvglidelinv

Immobile-mobile annihilation ρ̇
(α)
imm−anhl = α6ρ

(α)
mobileρ

(α)
imm2Rcbvglide

and dislocations freed from locks (third and fourth terms in Eq (2.67), respectively).

These terms also appear in the evolution rate equation for immobile dislocations

ρ̇
(α)
immobile = ρ̇

(α)
locking − ρ̇

(α)
freed − ρ̇

(α)
immobile−annihilation (2.68)

The locked dislocations term, which is negative in the mobile dislocation evolution
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equation, Eq (2.67), acts as the source term for the immobile dislocations. The cross

slip term in the mobile dislocation evolution, Eq (2.67), allows mobile dislocations to

move from one slip system to another slip system within the same cross slip family,

depending on the applied shear stress.

The inverse mean glide path, linv in Table 2.4, is a measure of the space among

existing dislocations through which a mobile dislocation could glide [135]. The inverse

mean glide path represents the increased difficultly of mobile dislocation glide as the

total dislocations accumulate within the grain; with increased numbers of accumu-

lated dislocations the space between accumulated dislocations decreases.

l
(α)
inv = βpath

√∑
β

ω(αβ)
(
ρ
(β)
mobile + ρ

(β)
immobile

)
(2.69)

where βpath is a fitting coefficient. This mean free glide path quantity is used as an

inhibiting agent in the dislocation evolution terms listed in Table 2.4.

2.3.4 Interaction of Dislocations and Other Defects

Physically-based frameworks write the constitutive slip system resistance equation

as a function of dislocation and defect densities within the crystal [135, 161]; both

defects and other dislocations act as barriers to dislocation motion [65, 204]. In

this model the resistance of the slip systems to dislocation motion is considered as

the additive sum of the physical barriers to dislocation motion, including dislocation
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forests, and irradiation defects:

g(α) = g(α)o + g
(α)
forest + g

(α)
irradiation−defects (2.70)

The slip system resistance due to dislocation forest-type accumulation on all slip

systems is modeled with a modified Bailey-Hirsch approach [15], following [135]:

g
(α)
forest = αmbhbµ

√∑
β

Ω(αβ)
(
ρ
(β)
mobile + ρ

(β)
immobile

)
(2.71)

where the hardening is termed self-hardening when α = β and latent-hardening when

α 6= β. The coefficient αmbh is a fitting parameter, b is the Burgers vector, µ is the

shear modulus of the material, and Ω is the interaction matrix containing the matrix

of self- and latent-hardening parameters.

Irradiation Defect Evolution in BCC Metals

The irradiation defects contribute to the embrittlement of the slip systems by

raising the slip system resistance, denoted as g
(α)
irradiation−defects in Eq (2.70). In α-iron

RPV steel self-interstitial atom (SIA) loops act as barriers to dislocation motion. The

contribution of the SIA loops is modeled by accounting for the 3D nature of the SIA

loop interaction as a barrier to dislocations.

g
(α)
irradiation−defects = αsiaµ

(
b2dsia
l3sia

)1/2

where lsia =
1

3
√
ρsia

(2.72)

The cubed root dependence of the mean free glide path type term in Eq (2.72) in-

dicates the ability of the SIA loops to inhibit the motion of dislocations in a sphere
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around the SIA loop. SIA loops can also be absorbed by dislocations which pass

through the same plane on which a SIA loop exists. Following [114], the evolution

of SIA loops is considered with a simple interaction model similar to the dislocation

annihilation terms in Table 2.4.

ρ̇sia = −4βsiaRsiaρsia
∑
α

ρ
(α)
mobilev

(α)
glide (2.73)

where βsia is a fitting parameter for SIA loop annihilation, Rsia is the radius within

which a dislocation can capture and absorb a dislocation and ρsia is the density of SIA

loops. After an initial exposure to irradiation, the density of SIA loops will decrease

under mechanical loading of the crystal as dislocation absorb the SIA loops during

glide motion.

Thermal Aging Defect Evolution in FCC Metals

The use of nickel alloys for piping materials in chemical industry processing plants

over decades provides a set of information on the in operation aging of commercial

nickel alloys. Several studies have analysized the microstructure of nickel-based alloys

after 50,000 hrs to 70,000 hrs of in service operation at temperatures of 450oC to

600oC [184, 175, 164, 193, 123]. Among the several precipitates and particles which

form in these complex alloys is the formation of long ranged ordered (LRO) Ni2Cr

precipitates [112]. These coherent precipitates form within nickel-based alloys after

long term exposure to relatively low temperatures [200]. Alloying components such
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as iron and molybdenum will shift the temperature range and aging time required

for these LRO precipitates to form [122, 188], yet these precipitates persist as a

microstructural feature in nickel alloys. These LRO precipitates are also know to

increase the hardness of nickel-based alloys [112, 201].

The extensive aging time to form the LRO precipitates in commercial nickel-based

alloys is not conducive to studying the impact of LRO precipitates on microstructures.

Many research groups have thus selected model binary alloys, which form the LRO

precipitates after reasonable aging times [113, 183, 200, 172]. These studies connect

the formation of LRO Ni2Cr precipitates with increased hardness of the model alloy.

Generally 10,000 hrs has been determined to be enough aging time to allow for the

complete formation of the LRO precipitates in the binary model alloy [183].

The Ni2Cr model alloy only demonstrates tertiary LRO precipitates, under 10 nm

in size. Based on this size, we have implemented a model for weakly coupled APB

shearing [89]. The effective spacing between two LRO precipitates is modeled in a

manner that accounts for the radii of the precipitates.

g
(α)
apb =

γapb
2b

[(
γapb · dLRO

µ

)1/2
dLRO

b(Ls − dLRO)
− π

4

(
dLRO
Ls

)2
]

(2.74)

where γapb is the energy of the anti-phase boundary, b is the Burgers vector, dLRO is

the mean planar diameter of the precipitate, µ is the shear modulus, Ls is the effective

spacing between precipitates, and f is the volume fraction of the tertiary precipitates.

The effective spacing between precipitates takes into account the diameter of the
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precipitates, [89]:

Ls =

(
8

3πf

)1/2

dLRO (2.75)

The weakly coupled terminology refers to the ability of the precipitate to contain

only a single dislocation partial at a time; larger precipitates which can contain both

partials of a dislocation are said to undergo strongly coupled APB shearing.

2.3.5 Geometrically Necessary Dislocations

In this work we calculate the density of the geometrically necessary dislocations

(GNDs) form the Nye’s dislocation density tensor, α. As has been discussed pre-

viously and in other published literature, the Nye’s dislocation tensor is a measure

of the curvature in the lattice [128] through the closure failure due to dislocation

accumulation [128, 36]. Kröner extended this theory to a continuum application from

the individual glide plane and dislocations which Nye considered [90, 91]. Ashby

first coined the term Geometrically Necessary Dislocations (GNDs), which we em-

ploy here, for these curvature dislocations [12]. Following [166] we compute the Nye’s

tensor [128] from the plastic velocity gradient

α ≈
∫ t+dt

t

∇X · LPdt (2.76)

where the dislocation tensor α is used to directly compute a measure of GNDs and

the plastic velocity gradient tensor, LP , is either a local quadrature point value or
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a smoothed value from the element nodes, depending on numerical implementation

selected.

2.3.6 Dislocation Twinning Volume Fraction Evolution

Given the small size of the precipitates in the binary Ni2Cr model alloy, about 10

nm, we study in this work, the microtwinning models often proposed for commercial

alloys are not appropriate for the material. As such, we have elected to implement

the twin volume fraction model proposed by [76]. Following Kalidindi’s approach, the

twinning model is given as [76].

ḟβtwin =
γ̇

γtwin

(
τβ

gβtwin

)1/m

if τβ > 0 (2.77)

This model tracks the evolution of the deformation twin volume fraction, ḟβ instead of

the twin slip rate in a form similar to the power law glide dislocation velocity model,

Eq (2.65). This additional slip term in included in the calculation of the plastic

velocity gradient. Because the mechanisms of twinning are not well understood, the

power law model is an appealing approach to capturing the effect of twinning [161].
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Table 2.5: Twinning systems in FCC crystals

Slip Plane Slip Direction Slip Plane Slip Direction

(111) [2̄11] (11̄1) [2̄1̄1]

(111) [12̄1] (11̄1) [121]

(111) [112̄] (11̄1) [11̄2̄]

(1̄11) [211] (1̄1̄1) [21̄1]

(1̄11) [1̄2̄1] (1̄1̄1) [1̄21]

(1̄11) [1̄12̄ (1̄1̄1) [1̄1̄2]

In an FCC material, the {111} planes are also the twinning planes, and the twin

direction, < 112 >, yields a total of 12 twin systems, Table 2.5.

2.4 Numerical Implementation in MOOSE

This crystal plasticity model has been implemented in INL’s MOOSE software

environment. MOOSE is a Multiphysics Object Oriented Software Environment for

FEM modeling to solve coupled physics simulations [57]. Our use of the PJFNK

preconditioner and solver functionality offered in MOOSE enables us to run simula-

tions with slightly off Jacobians rather than requiring exact Jacobians. This ability

frees our implementation from the constraints imposed by required calculations of the
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Jacobian of the governing equations, the difficulty of which is discussed by [104].

We have implemented the CDD crystal plasticity model within the MOOSE tensor

mechanics module. The evolution equations are implemented in an updated Lagri-

anian incremental form, and a trial stress increment is predicted at each simulation

iteration on each of the quadrature points. Using a Newton Rhapson approach, out-

lined in Figure 2.5, we consider the system convergence when the residual of the

second Piola-Kirchhoff stress increments from the current and previous iterations is

within tolerances specified by the user. The converged Cauchy stress value and the

corresponding strain are then calculated, as shown in Figure 2.4, before being passed

back to MOOSE for the FEM integration residual calculation. This Cauchy stress

residual calculation is based on the stress divergence theorem, Eq (2.55), and MOOSE

reduces the residual from the left-hand side of this equation to the specified toler-

ance. The Newton-Rhapson iteration algorithm implemented in MOOSE separates

the iteration over the second Piola-Kirchhoff stress residual from the physically based

constitutive models used to calculate the plastic velocity gradient, Figure 2.5. The

convergence algorithm for Newton-Rhapson iteration is taken from other approaches

already implemented in MOOSE and is adapted for our crystal plasticity framework.
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Recieve total deformation gradient F
from initial elastic strain calculation

Set the initial trial 2nd Piola Kirchhoff stress, S,
as the converged value from the previous timestep

Newton-Rhapson Iteration:
Crystal plasticity model updates the trial stress, S,

and the plastic velocity gradient, LP ,
until the stress residual is converged

Calculate the Cauchy stress,
T = 1

det(Fe)
· Fe · S · FeT

for the stress divergence calculation

Calculate the approximate tangent modulus

J = 1
det(Fe)

·
(
∂Fe

∂F
SFeT + Fe ∂S

∂F
FeT + FeS∂FeT

∂F

)
for the JFNK algorithm

Calculate the right Green strain measure

ε = 1
2

(
FT · F− I

)

Pass back Cauchy stress, T, and
tangent modulus, J, to MOOSE for FEM integration

Figure 2.4: The flowchart for the calculation of the stress and strain measures within

the CrystalPlasticityUpdate class as implemented in the tensor mechanics module of

MOOSE is shown here. The components involved in the Newton-Rhapson iteration are

shown in light blue and expanded in Figure 2.5, and the components shown in light orange

are executed once per MOOSE iteration.
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Recieve trial stress, S, and deformation gradient, F,
and set the initial constitutive values for

the first iteration, e.g. gα, ραm, ραi

Calculate the applied shear stress
τα = S : sαo ⊗mα

o

Calculate the slip increment and the
plastic velocity gradient

∆LP =
∑

α ∆γαsαo ⊗mα
o

Update the deformation gradients and strain:
FP−1 = FP−1

old ·
(
I−∆LP

)
Fe = F · FP−1

εe = 1
2

(
FeT · Fe − I

)
Calculate the stress residual
R = ||S(n−1) − (C : εe) ||

Calculate the crystal plasticity Jacobian

J = I−
[
C ∂εe

∂Fe
∂Fe

∂FP−1
∂FP

−1

∂S

]

Check convergence
of R

Update the slip resistances
gα = f (ραm, ρ

α
i )

Update trial stress
S = S(n−1) − J−1 ·∆S

Pass back converged stress, S,
and plastic velocity gradient, LP

Yes

No

Figure 2.5: The algorithm components of the Newton-Rhapson iteration are shown in light

blue and the crystal plasticity constitutive model components are shown in light green.
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The code developed in this work includes both algorithms shown in Figures 2.4

and 2.5. The initial implementation of the algorithm in Figure 2.4 was completed

within another MOOSE class [29]. In this work we have migrated this algorithm,

and the Newton-Rhapson iteration, shown in Figure 2.5, to a new type of MOOSE

code class. This new code class, the StressUpdate classes, is designed to perform an

internal iteration. To return a trial stress to the yield surface, the internal iteration

ability of the StressUpdate classes is best suited for our use case here.

In this work we have focused on expanding the physically based crystal plasticity

constitutive models, indicated by the light green components in Figure 2.5. We have

also modified the Newton-Rhapson iteration methods, shown in light blue in Figure

2.5, to accommodate multiple contributions to the total slip increment and plastic

velocity gradient calculations.

We calibrated our proposed crystal plasticity model by focusing first on unirradi-

ated α-iron single crystal data and then verifying the implementation of the irradiation

defect hardening models against lower-length scale simulations. In the aluminum and

nickel alloy simulations covered later in this work, we relied on previously calibrated

values of the CDD dislocation evolution parameters [177].
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CHAPTER 3. CONTINUUM DISLOCATION DYNAMICS

MODEL FOR IRRADIATED α-IRON

We transition from the discussion of the theoretical foundations to the presenta-

tion of results with this chapter on the Continuum Dislocation Density (CDD) model

for glide dislocations. Here we apply the CDD crystal plasticity model to a body

center cubic (BCC) α-iron material. Ferritic-martensitic irons are used in light water

reactor (LWR) nuclear power plants for the reactor pressure vessel (RPV) because of

their resistance to irradiation damage. Nonetheless, as discussed in Chapter 1, these

BCC irons still experience significant irradiation damage under prolonged irradiation

doses. The primary irradiation damage defect is self-interstitial atom (SIA) loops

[167]. Several groups have focused on the problem of modeling the interaction of dis-

locations and SIA loops in BCC metals, as we discussed in Section 1.2, yet none have

fully captured the physical interactions among the key microstructure components,

particularly cross-slipped dislocations. To focus on capturing the physical interac-

tions among dislocations and SIA loops in this work we have performed simulations

with α-iron exclusively.

We explore, in particular, the modeling of the stochastic process of cross slip and

the role of interaction between anisotropy in slip system strength and stochastic cross

slip. Through these interactions, our CDD crystal plasticity model is able to capture
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both the stress response and the physical evolution of dislocation on different slip

system planes.

In this chapter we present a dislocation density based continuum crystal plas-

ticity model composed of physically-based interaction mechanisms in the dislocation

evolution equations, including a combined stochastic-Monte Carlo approach for cross

slip calculations to capture the random nature of this dislocation mechanism. This

dislocation evolution model is coupled to an equation for SIA loop evolution, and

hardening is calculated as a function of both dislocation and SIA interactions. Single

crystal verification experiments are used to calibrate the continuum dislocation dy-

namics (CDD) crystal plasticity model before assessing the predictive capability of

the model with a simplified polycrystalline geometry. In Section 3.1 we introduce the

constitutive model and the details of the dislocation and SIA loop evolution equa-

tions. In Section 3.2 we describe our calibration of the CDD crystal plasticity model

to single crystal α-iron tensile experiments. In Sections 3.3 and 3.4 we present the re-

sults of the finite element simulations, including a discussion of cross slip approaches

and a comparison to lower length scale simulations and experimental polycrystalline

data, before some concluding remarks in the final section.
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3.1 CDD Crystal Plasticity Implementation for BCC α-Iron

3.1.1 Anisotroic Slip System Strength

Physically-based frameworks write the constitutive slip system resistance equation

as a function of dislocation and defect densities within the crystal [135, 161]; both

defects and other dislocations act as barriers to dislocation motion [65, 204]. In this

model the resistance of the slip systems to dislocation motion is considered as the

sum of the physical barriers to dislocation motion, including dislocation forests and

irradiation defects.

g(α) = g(α)o + g
(α)
forest + g

(α)
irradiation−defects (3.1)

In Eq 3.1 the Peierl’s strength, or the internal lattice friction, is represented by a

constant, gαo . The effect of anisotropy is accounted for by adjusting the initial slip

system resistance for each type of slip system type:

g(α)o =



2.5 · τps g
{110}type
o

1.0 · τps g
{112}type
o

2.0 · τps g
{123}type
o

(3.2)

where τps is the isotropic Peierls strength of the material. In light of the studies which

show only the {110} and {112} planes are active at lower temperature [154], we follow

the approach of [4] and consider only these two slip systems in our crystal plasticity
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model for a total of 24 slip systems.

3.1.2 Stochastic Cross Slip Models

Cross slip is a significant component of dislocation motion in BCC materials [152].

In lower length scale models, such as dislocation dynamics, the probability of cross

slip from single slip systems within a cross slip family is calculated as a stochas-

tic process. [158] presented a probability for a single dislocation to cross slip based

on applied shear stress and temperature. The challenge in continuum level models,

including crystal plasticity, is how to adapt the discrete probability model for con-

tinuum dislocation density values while retaining the physical basis of the cross slip

model.

This work explores the effect of two different models for stochastic cross slip

representation within a continuum framework: a stochastic model and a stochastic-

Monte Carlo combination model for calculating dislocation cross slip. The stochastic

only model is taken from [145] and will be denoted in this work as stochastic-PM after

the two authors; the combination stochastic and Monte Carlo method, introduced in

this work, is given the notation stochastic-MC. We begin first with a description of

the stochastic-MC approach.
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Stochastic-MC Cross Slip Approach

In the stochastic-Monte Carlo combination approach to modeling dislocation cross

slip, we calculate the probability of cross slip with the same equation used by [158]

Pαβ = exp

(
−
(
τ ∗ −

∣∣τβ∣∣Va)
kT

)
(3.3)

where τ ∗ a critical stress for a dislocation to cross slip in mm, τ (β) is the applied

shear stress on slip system β in mm, Va is the volume (mm3) required for cross

slipped dislocation, k is the Boltzmann constant, and T is the temperature in Kelvin.

The probability of cross slip to the slip system is calculated for each slip system within

a cross slip family. The cross slip systems with the higher applied stress will have

the larger probability of receiving cross slipped dislocations. We then construct a

continuous distribution function (CDF) for each cross slip system by normalizing the

probability by the sum of all probabilities within the slip system, such that the CDF

is bounded between 0 and 1. The CDF function consists of bins for the normalized

probability that a certain system will receive cross slipped dislocations.

We then perform a Monte Carlo type analysis to determine which slip system

gives cross slip dislocations to which other system by comparing a random number

to the CDF for the cross slip family. For each slip system, a random number from

(0, 1] is generated, and that random number is compared against the bins in the CDF.

The bin in which the random number falls is considered to be the slip system which
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receives the cross slip dislocations from the slip system for which the random number

is generated.

ρ
(α)
cross−slipped =

β|family∑
β=1

P βαρ(β) =

β|family∑
β=1

ρ
(β)
received − ρ

(α)
given (3.4)

where β|family is the total number of slip systems within a cross slip family, P βα is

the probability of cross slip defined in Eq (3.3), ρ
(β)
received are cross slipped dislocations

received from other slip systems in the same cross slip family, and ρ
(α)
given is the amount

of dislocation which cross slip from the current (α) system to another system. ρ
(β)
received

is only nonzero if the Monte Carlo analysis determines that the current slip system (α)

receives cross slip dislocations from a (β) system. If the random number generated

and the CDF bin into which the random number falls are associated with the same slip

system, that slip system is considered to not produce any cross slipped dislocations

and ρ
(α)
given is zero.

Stochastic-PM Cross Slip Approach

The stochastic only cross slip approach is included in this work for comparison

to the stochastic-Monte Carlo combination approach. The stochastic only model is

implemented following the approach of [145]. In this approach, the probability of

cross slip is calculated using Eq (3.3). The probability values are used as coefficients
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to the mobile dislocation densities to calculate the cross slip dislocation density.

ρ
(α)
cross−slipped = Pαβ

β|family∑
β 6=α

ρ
(β)
mobile − ρ

(α)
mobile ·

β|family∑
β 6=α

Pαβ

 (3.5)

where the superscript α represents the current slip system, and the superscript β

represents the other slip systems in the same cross slip family, and β|family is the

total number of slip systems within a cross slip family.

In the stochastic-PM approach, all slip systems participate in cross slip in every it-

eration, loosing and gaining cross slipped dislocations. The net change of cross slipped

dislocations for a single slip system depends both on the value of the probability of

cross slip and on the value of the mobile dislocation densities.

3.2 Single Crystal α-Iron CDD Simulations

We calibrated our proposed crystal plasticity model by focusing first on unirradi-

ated α-iron single crystal data and then verifying the implementation of the irradiation

defect hardening models against lower-length scale simulations.
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Table 3.1: Parameter values used in the single crystal CDD α-Fe simulations.

Parameter Value Description

C11 242×103 MPa Elastic constant, [65]

C12 150×103 MPa Elastic constant, [65]

C44 112×103 MPa Elastic constant, [65]

µ 80×103 MPa Shear modulus, [65]

b 2.48×10−7 mm Burgers vector, [65], Eq (2.59)

γ̇o 4.0×10−2 Reference strain rate, Eq (2.65)

m 0.012 Strain rate sensitivity exponent, Eq (2.65)

αmbh 0.4 Dispersed barrier coefficient, Eq (2.71)

Ωαα 1.0 Self-hardening coefficient, Eq (2.71)

Ωαβ 0.2 Latent-hardening coefficient, Eq (2.71)

ωαα,ωαβ 1.0 Mean free glide path, Eq (2.69)

Rc 15b mm Annihilation radius of capture, Table 2.4

τ ∗ 4×10−3 · µ Critical cross slip stress, Eq (3.3)

Va 20b3 Volume for dislocation cross slip, Eq (3.3)

k 1.38065×10−20 Bolztmann constant, Eq (3.3)

T 298 K Temperature, Eq (3.3)
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3.2.1 Unirradiated Dislocation Evolution Calibration

Using single crystal tension test experimental data [78], we calibrated the param-

eters for the dislocation evolution models, Eqs 2.67 and 2.68 and Table2.4 against

α-iron single crystal data from three different loading directions, following [99]. These

particular loading orientations change in the influence of the cross slip term (α5 in Eq

2.67 and Table 2.4) by varying the number of active slip systems: [001] has four active

slip systems, [01̄1̄] has two active slip systems, and [3̄48] has only a single active slip

system.

The single crystal calibration simulations were performed on a 1 mm3 cube mesh

consisting of 216 Hex8 elements. Symmetric boundary conditions were used and a

displacement loading rate corresponding to a strain rate of 3.3 × 10−4 s−1 was applied;

the strain rate matches that used by [78]. The values of the elastic properties, glide

velocity, and dislocation cross slip were held constant through out this calibration

process and are listed in Table 3.1. We assumed equal values for the initial mobile

dislocation density and the initial immobile dislocation density, set at 2.5×105 mm−2

[99].

Beginning with values for the dislocation evolution equation α parameters, Eqs

(2.67) (2.68) and Table 2.4 suggested by dislocation dynamics simulations [101], we

varied the values of the parameters to obtain agreement with the experimental curves
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Figure 3.1: Verification of the dislocation evolution parameters listed in Table 3.2 against

single crystal BCC α-Fe tensile experimental data [78], reproduced from [99].

for each loading orientation. The crystal plasticity simulations using the finalized

parameters values are presented in Figure 3.1 against the experimental data from

[78]; the specific values of the dislocation evolution parameters are listed in Table 3.2.
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Table 3.2: Dislocation evolution parameters for Eqs (2.67) and (2.68) and Table 2.4 cali-

brated for the crystal plasticity model in single crystal α-Fe simulations.

Load Orientation α1 α2 α3 α4 α5 α6 τps

[100] 0.03 0.5 0.002 0.002 0.015 1.0 15 MPa

[01̄1̄] 0.03 0.5 0.002 0.002 0.0335 1.0 8.8 MPa

[3̄48] 0.03 0.5 0.002 0.002 0.044 1.0 8.8 MPa

We acknowledge the difference in the Peierls stress value used in each of the three

loading directions, as was observed by [177]. The variance of the cross slip evolution

parameter is an indication of the more significant role of cross slip in the deformation

of the single active slip system loading direction than in the loading direction with

multiple active slip systems.

3.2.2 Mesh Convergence Study

In conjunction with the calibration procedure for the dislocation evolution param-

eters, we performed a mesh convergence study on each of the three loading directions.

The parameters given in Tables 3.1 and 3.2 were used in these mesh convergence stud-

ies, and the same symmetry and tensile loading boundary conditions as used in 3.2.1.

These mesh convergence studies were performed using the stochastic cross slip model,
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Eq 3.4. A series of meshes, in which the number of elements in each linear direction

was successively increased, were used to run the same crystal plasticity simulation: 8

(23), 64 (43), 216 (63), and 512 (83) total elements in the 1 mm3 cube. The results of

this mesh convergence study are shown in Figure 3.2.

We observe a mesh size dependence in the results which is correlated with the

number of activated slip systems: the random nature of the stochastic cross slip

method impacted the mesh density required to obtain a solution in the single slip

system loading direction [3̄48] more than it did in the multiple active slip system

loading direction of [100]. The [100] loading direction, with four active slips systems,

displays negligible dependence on the relative element size because the cross slip has a

minimal impact on the overall stress-strain curve. The simulation results for the [011]

loading direction, with two active slip system, show moderate mesh dependence, with

the finer mesh simulation results crossing over the coarser mesh results around 0.04

strain. The results from the single activated slip system, the [3̄48] loading direction

demonstrate significant dependence on the mesh density. With only the singly active

slip system, the cross slip term plays an important role in the crystal response, and

a larger number of elements is required to average the impact of the stochastic cross

slip behavior.
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Figure 3.2: Mesh convergence of the CDD crystal plasticity model depends to a degree on

the number of active slip systems for the given loading direction. The loading direction with

the greatest number of active slip systems, [100], demonstrated no mesh dependence while

the single activated slip system loading orientation, [3̄48], does demonstrate sensitivity to

the number of elements used in the mesh. The numbers given in the legends correspond to

the total number of elements in the mesh.
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Among the three mesh convergence comparisons in Figure 3.2, the stress strain

response of all three loading orientations appears reasonably converged by 216 (63)

elements. Therefore, in the simulations presented in the dislocation evolution calibra-

tion, Section 3.2.1 and in the following results, Sections 3.2.4 and 3.4, we have taken

the reference mesh size as 216 elements per crystal grain.

3.2.3 Strain Rate Sensitivity

Additionally we performed a strain rate sensitivity study, using a 1 mm3 cubic

mesh geometry with the material properties from Table 3.1 and the dislocation evo-

lution parameters for the [100] direction from Table 3.2. We applied three different

tensile displacement loading conditions along the [100] direction; these displacement

loading conditions correspond to strain rates of 1×10−2 s−1, 1×10−3 s−1, 1×10−4 s−1.

Symmetry boundary conditions were applied to the 216 element mesh of the single

crystal. As shown in Figure 3.3, the CDD model demonstrates an expected sensitivity

to the applied strain rate, with higher strain rates producing higher stress responses.

3.2.4 Connection between Cross Slip and Anisotropy

The inclusion of anisotropy is necessary to capture the single slip system behav-

ior of the [3̄48] loading direction orientation. The transfer of dislocations from the
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Figure 3.3: The CDD crystal plasticity model demonstrates mild sensitivity to the applied

strain rate, with higher strain rates producing a higher stress response.

active (2̄11)[111] system to the (1̄01)[111] system and later the (1̄10)[111] system

relieves the dislocation growth on the active system; this dislocation growth miti-

gation prevents over hardening of the crystal stress response. These two systems

have the highest probability of receiving cross slip dislocations within the [111] cross

slip family; therefore it is likely that dislocations will cross from from (2̄11)[111] to

(1̄01)[111] and (1̄10)[111], as shown in Figure 3.4. Despite the similar probabilities

of cross slip on these two systems from the similar absolute applied shear stresses,

the anisotropic correction, Eq (3.2), to the intrinsic lattice friction value of the {110}

systems prevents activation of this slip system.

The higher slip system resistance allows the (1̄01)[111] and (1̄10)[111] systems to

absorb the cross slipped dislocations from the (2̄11)[111] system. This absorption of

cross slipped dislocations from an active system by an inactive system enables our
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Figure 3.4: The anisotropy correction to the intrinsic lattice friction strength, Eq (3.2),

hardens the {110} type systems relative to the {112} type systems so that dislocations can

cross slip from the lower slip resistance systems to the higher resistance systems without

additional slip system activation. This figure includes the six slip systems from the [111]

cross slip family.

crystal plasticity model to capture the nearly ideally plastic behavior of the single

crystal loaded in the [3̄48] direction.

3.2.5 SIA Loop Evolution Verification

The verification of the SIA loop defect model consists of comparing the stress-

strain curves generated by our crystal plasticity model to those from dislocation dy-
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namics simulations [8], following the approach of [17]. As in the dislocation dynamics

simulations, these crystal plasticity simulations were performed on µm3 cubes. These

cubes were loaded in tension in the [100] direction with traction free boundary con-

ditions on the lateral sides. A displacement loading rate equivalent to a strain rate

of 100 s−1 was applied to the top of the cubes. Six different verification simulations

were run, each with a different initial SIA loop density: 1.63 × 1013 mm−3, 8.15 ×

1012 mm−3, 3.61 × 1012 mm−3, 1.63 × 1012 mm−3, 8.15 × 1011 mm−3, and unirra-

diated. Following [17] an initial dislocation density of 2×10−7 mm−2 was assumed,

split evenly among mobile and immobile dislocations, and a Peierls stress of 80 MPa

was applied. The remaining SIA loop specific parameters are given in Table 3.3.

Table 3.3: Values of the parameters used in the CDD crystal plasticity model in the SIA

loop terms, Eqs (2.73) and (2.72), for the verification of the SIA loop following [17].

Parameter Value Description

αsia 0.7 Hardening coefficient, [96], Eq (2.72)

βsia 1.0 Loop annihilation coefficient, [114], Eq (2.73)

Rsia 15b mm Loop annihilation radius, [114], Eq (2.73)

dsia 2.48×10−5 mm Average SIA loop diameter, [17] Eq (2.72)
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The remainder of the model constants used in these verification simulations are

those listed Table 3.1 as are the dislocation evolution parameters for the [100] loading

direction in Table 3.2.
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Figure 3.5: Comparison of crystal plasticity simulations with dislocation dynamics sim-

ulations of the the stress-plastic strain evolution with varying initial values of SIA loop

densities demonstrate similar trends an in [17]. The dislocation dynamics data, indicated

by the outlined markers, are reproduced from [8] and our crystal plasticity simulation results

are shown by the solid lines.

The results of these simulations compare reasonably well with the dislocation

dynamics simulations from [8], as shown in Figure 3.5. As in [17] the use of anistropic

elasticity in the crystal plasticity model requires the comparison of plastic strains

between the dislocation dynamics simulations and our crystal plasticity simulations.

Our model relies on a scalar form of SIA loop evolution while [17] employs a tenso-
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rial form of the SIA density rate to accounts for the 3D natures of SIA loop interaction.

The 3D interaction among the SIA loops and the dislocations is accounted for with a

cube root term, Eq (2.72). The comparison of this crystal plasticity model with the

dislocation dynamics simulations results, Figure 3.5, demonstrates similar alignment

trends with the dislocation dynamics results as shown by the more complex tensorial

model of [17]. Based on these results, our scalar SIA loop density evolution rate

model, Eq (2.73) is able to acceptably replicate the lower length scale results trends

for varying initial SIA loop densities in a less computationally intensive manner.

3.3 Comparison of Stochastic Cross Slip Models

The inclusion of a cross slip term in the dislocation evolution equations is key

to capturing the stress-strain behavior of the single slip loading orientation. Cross

slip of dislocations away from the activated slip system mitigates the growth of the

dislocation density of this slip system; thus, cross slip prevents the over hardening of

the effective stress response.

A key feature of our crystal plasticity model is the inclusion of the combination

stochastic-Monte Carlo cross slip term, Eq (3.4), to capture the random nature of

the physical cross slip dislocation movement. The reader will recall the comparison

of the mathematical theory behind the stochastic-MC approach, section 3.1.2, with
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the more commonly applied stochastic only (stochastic-PM) approach, section 3.1.2.

Both cross slip approaches use the same calculation for the probability of cross slip,

Eq (3.3), which is a function of the applied shear stress. The difference in the two

approaches, which we investigate here, exists in the method for determining which

slip systems interact in cross slip. Based on previous studies conducted with a CDD

stochastic cross slip approach [101], we anticipated the largest difference in the cross

slip approaches to be demonstrated in the [3̄48] loading direction. In our comparison

single crystal simulations, we apply the same symmetric boundary conditions and

loading rate with the material parameters given in Table 3.1 and Table 3.2 for the

[3̄48] loading direction. In the stochastic-PM cross slip approach, we adjust the

leading coefficient, α5, to produce parity in the density of the cross slipped dislocations

between the two approaches at the beginning of the simulations.

With consistent trends in the probability of cross slip among slip systems, Fig-

ures 3.6a and 3.6b, we examine the impact of the two cross slip approaches on the

mobile dislocation density. In both approaches, Figures 3.6c and 3.6d, the cross

slip of dislocations away from the active (2̄11)[111] system, and, to a lesser extent

from the secondary activated (1̄21)[111̄] and (1̄21)[111̄] systems, relieve the growth of

dislocations on the active slip systems.
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(d) Stochastic-PM: Cross slip density
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(f) Stochastic-PM: Mobile dislocations

Figure 3.6: Comparison of the cross slip approaches on the dislocation density evolution.
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In the combination stochastic-Monte Carlo approach, Figure 3.6e, this transfer of

dislocations through cross slip enables the dislocation density on the active (2̄11)[111]

system to grow at a moderate pace. Even though the mobile dislocation density on

additional slip systems (1̄21)[111̄] and (11̄2)[1̄11] increases, the primary slip system

(2̄11)[111] consistently maintains the highest dislocation density value as expected in

a single slip loading orientation.

In contrast, the stochastic only approach introduces an apparent saturation limit

in the (2̄11)[111] system mobile dislocation density. The saturation from the deter-

ministic approach reduces the mobile dislocation density of the (2̄11)[111] system

to such an extent that the mobile dislocation density of the secondary (1̄21)[111̄]

system grows to parity with the primary (2̄11)[111] system, Figure 3.6f. While the

stochastic-only approach does produce a stress-strain curve similar to the experimen-

tally measured curve, demonstrated in Figure 3.1c, the inability of this approach to

maintain the (2̄11)[111] system as the primary activated slip system demonstrates the

limitations of the stochastic only approach within a physically based crystal plasticity

model.
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3.4 Polycrystalline Irradiated α-Iron Simulations

We compare the results of our CDD crystal plasticity model to irradiated poly-

crystalline experimental data to evaluate the model’s ability to predict RPV behavior

after exposure to radiation. As a first step, we compared a polycrystalline application

of the CDD crystal plasticity model to unirradiated α-iron experimental data. Our

simplified polycrystalline geometry consists of 27 equally sized cubic grains, with an

average diameter of 250×10−6 mm [95], and each grain is meshed with 216 elements,

as shown in Figure 3.7. The orientations of the grains were determined by random

assignment of the three Bunge Euler angles, within the usual angle bounds, using the

Python random number generator with a normal distribution [153]. The Bunge Euler

angle distribution is shown in Figure 3.8.

The dislocation evolution parameters from Table 3.2 for the [100] loading orien-

tation were used in these polycrystalline simulations and the same α-iron material

parameters from Table 3.1, except for the Peierls stress value: we used the polycrys-

talline value of 11 MPa [65]. We applied initial dislocation density value of 5×107

mm−2, which falls within the experimentally measured 7±2×107 mm−2 given by [95];

this value of initial dislocation density was selected by calibrating to the unirradiated

data for polycrystalline α-iron. The initial dislocation density value was split evenly

among the mobile and immobile initial dislocation densities. We applied symmetry
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Figure 3.7: The simplified geometry, consisting of 27 cubic grains, used to examine the

CDD crystal plasticity model in a polycrstalline application.

boundary condition to the model with a displacement loading rate corresponding to

the strain rate of 2×10−4 s−1 to match the experimental loading conditions, shown

in Figure 3.7.

The same mesh, Bunge Euler angles, and parameters are retained for the irradi-

ated polycrystalline simulation. To capture the effect of the irradiation defects, we

included the terms for the SIA loop evolution, Eq (2.73), and interaction with the

dislocations, Eq (2.72). The parameters for these equations, selected to correspond

to an irradiation dose of 0.1 dpa, are given in Table 3.4.

We have set the value of the dislocation slip system hardening coefficient, αsia
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(a) Bunge Euler angle φ1 (b) Bunge Euler angle Φ (c) Bunge Euler angle φ2

Figure 3.8: Crystal orientations of the 27 cubic grains in our simplified polycrystalline

model, given in Bunge Euler angles, generated using the random function from the python

library [153]. The orientation of these polycrystalline models matches the orientation shown

in Figure 3.7.

to 0.6, which lies between the values of 0.7 [96] and 0.37 [28] used in other studies

of irradiated α-iron. Following the approaches of [101, 28] we also have lowered the

value of the SIA loop annihilation coefficient by a factor of 100; we hypothesize that

this reduction of the SIA loop annihilation constant is a result of the much smaller

loop diameter from the diameter used in the comparison to the dislocation dynamics

simulations in Section 3.2.5.

The stress response of the cubic polycrstalline simulation is calculated as an ef-

fective von Mises-type stress measure, averaged across all of the quadrature points in

the mesh equally. This effective second Piola-Kirchhoff stress measure is compared to

the experimental data from [95] in Figure 3.9. The CDD crystal plasticity simulations
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Table 3.4: Values of the parameters used in the SIA loop terms of the crystal plasticity

model for polycrystalline α-Fe exposed to a radiation dose of 0.1 dpa, including initial

conditions.

Parameter Value Description

αsia 0.6 Hardening coefficient, Eq (2.72)

βsia 0.01 Loop annihilation coefficient, Eq (2.73)

Rsia 15b mm Loop annihilation radius, [114] Eq (2.73)

ρsia 1.2×1012 mm−3 Initial SIA loop number density, [119]

dsia 7.0×10−6 mm Average SIA loop diameter, [119], Eq (2.72)

agree with the unirradiated experiment and the irradiated experimental data trends,

Figures 3.9a and 3.9b.

The slight under prediction by the CDD simulation results of the experimentally

measured data in Figures 3.9a and 3.9b indicates that the CDD crystal plasticity

model lacks a hardening contribution. A possible correction to the under predicted

hardening is a strain gradient type term. Such a term is often used in crystal plas-

ticity frameworks to capture the effects of grain boundaries on the stress response of

the bulk crystal [161]. We note that the build up of stress concentrations near the

grain boundaries in the unirradiated simulation, Figures 3.10a and 3.10b, particularly

along the boundaries of the selected grains, Figure 3.10a. The grains demonstrate
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(a) Unirradiated polycrystalline α-iron CDD

simulation compared to experimentally mea-

sured tensile test data[95]
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(b) Irradiated (0.1dpa dose) polycrystalline

α-iron CDD simulation compared to experi-

mental data [95]

Figure 3.9: The CDD model captures the polycrstalline stress response of unirradiated

and 0.1 dpa irradiated α-iron with the simplified cubic polycrstalline geometry. The exper-

imental data points for α-iron are reproduced from [95].

an increase of stress, larger than the stress in the interior of the grains, at the grain

boundaries. These stress concentrations at the grain boundaries indicate that addi-

tional hardening would be captured by the inclusion of a strain gradient term in the

CDD model.
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(a) Stress response of select grains within the

simplified polystalline model from the unir-

radiated α-iron case.

(b) Effective stress response of the complete

polycrystalline simulation of unirradiated α-

iron at 0.1 effective strain.

Figure 3.10: An examination of the elements near the grain boundaries in the simplified

cubic polycrystalline model of α-iron reveals a buildup of stress along some boundaries of

the grains, with a higher effective stress value along certain boundaries than within the

remainder of the grain. The inner boundary of the top grain and the bottom boundary of

the lower grain in (a) demonstrate this observed disparity among the inner grain and the

grain boundaries.

The influence of the grain boundaries on the solution is also evident in the distribu-

tion of mobile dislocations along the grain boundaries. Figures 3.11a and 3.11b show

the distribution of mobile dislocations on the [112](111̄) slip system. The inclusion

of a strain gradient type term would improve the CDD crystal plasticity framework
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prediction of stresses and mobile dislocations along the grain boundary by capturing

the influence of differently oriented grains. The addition of such a grain boundary

sensitive term is a future development goal for the CDD crystal plasticity framework.

(a) Mobile dislocation density on the

[112](111̄) slip system of select grains within

the simplified polystalline model from the

unirradiated α-iron case.

(b) Mobile dislocation density on the

[112](111̄) slip system in the complete poly-

crystalline simulation of unirradiated α-iron

at 0.1 effective strain.

Figure 3.11: The distribution of the mobile dislocations on the [112](111̄) slip system

shows the influence neighboring grains on dislocation evolution even in the local CDD model.

These results are shown on the unirradiated α iron simplified polycrstalline geometry.

The general alignment of our CDD model with the measured polycrystalline re-

sponse, even when applied to a simplistic cubic geometry, demonstrates the capability

of our crystal plasticity model to predict the hardening behavior of α-iron exposed
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to irradiation. The physically based dislocation and dislocation-SIA loop interac-

tion terms of the CDD crystal plasticity model can successfully capture the complex

physical mechanisms of irradiated α-iron.

3.5 Conclusions and Future Recommendations

We have developed a continuum dislocation dynamics crystal plasticity model with

dislocation evolution terms based in physical dislocation interaction mechanisms. The

dislocation evolution is coupled with SIA loop evolution in acknowledgement of the

interstitial loops significant impact on the irradiation behavior of RPV steels. This

model leverages the results of lower length scale molecular dynamics and dislocation

dynamics simulations to establish the evolution equations for both the dislocations

and the SIA loops. We calibrated the dislocation evolution components of the crystal

plasticity model against single crystal tensile experiments of α-iron. The importance

of the stochastic dislocation cross slip model in conjugation with the anisotropic

strength of the BCC slip systems is emphasized as necessary to correctly capture the

dislocation behavior in a loading orientation selected for single slip system activation.

Verification of the coupling between the dislocation evolution and the SIA loop evo-

lution was perfomed by comparing the simulation trends from this model with trends

from dislocation dynamics simulations. We then applied the CDD crystal plasticity
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model to a polycrystalline application with a simplistic geometry. The CDD model

demonstrates the ability to predict the stress response of irradiated polycrystalline

α iron, although we note that a future development goal is the addition of a strain

gradient term to capture hardening contributions from the grain boundaries in poly-

crystalline simulations. The results of this mechanism based CDD crystal plasticity

model can be used to inform engineering scale models that rely on the stress response

from an evolving microstructure under radiation and deformation conditions.
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CHAPTER 4. GEOMETRICALLY NECESSARY

DISLOCATION DENSITY MODEL ADDITION

Geometrically necessary dislocations form in regions of lattice bending caused by

different strain patterns [68] and in low-angle grain boundaries [109]. The geomet-

rically necessary dislocations are used within crystal plasticity frameworks to model

additional resistance to mobile dislocation glide [12, 166, 56, 174, 45, 60, 124, 161, 59],

even though the approaches vary significantly in the methodology and hardening

models used. A number of different approaches to calculate the GND density from

the Nye’s dislocation tensor have been proposed and employed by different research

groups, as discussed by [36]. These approaches vary from an effective GND density

[50, 202], separation out into GND densities on each slip system plane [45], or cat-

egorization into screw and edge densities [108], among others. Here we follow the

approach of Shizawa and Zbib by calculating a total normalized GND density for all

slip systems from the Nye’s dislocation tensor [166, 51].

In this chapter we discuss the methods used the calculate the Nye’s dislocation

tensor, including two approaches to calculating the derivative of the plastic velocity

gradient tensor, the calculation of the total GND density, and the incorporation of

the GNDs into the crystal plasticity framework described in Chapter 3.



115

4.1 Calculation of the Nye’s Tensor

We calculate the Nye’s dislocation density tensor as the curl of the plastic velocity

gradient as

∆α ≈
∫ t+dt

t

∇X × LPdt (4.1)

following Shizawa and Zbib [166, 106]. As shown in that work, this implementation

is themodynamically consistent in the first intermediate configuration. In our imple-

mentation we first calculate the Rank-3 tensor gradient of the plastic velocity tensor

before reducing to the Rank-2 curl derivative. Given the time dependent evolution of

Eq (4.1), we have implemented an incremental approximation of the form

α ≈ ∆α+αn−1 =
(
∇X ×∆LP ·∆t

)
+αn−1 (4.2)

where n indicates the current time step increment. For consistency with Eq (2.66) we

calculate the derivative of the plastic velocity gradient with respect to the undeformed

configuration [36]. In this work we introduce two different methods for calculating

the Rank-3 gradient of the plastic velocity gradient tensor increment, ∇X×∆LP ·∆t,

for comparison of the methods and the results from the two different approaches: a

method using a sum of the gradients of the shape functions, Section 4.1.1, and a second

method which uses a ZZ-patch to recover the solution of the plastic velocity gradient

components at the nodes before finding the gradient at the quadrature points with

the same MOOSE framework infrastructure [57] used to calculate the displacement
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gradients, in Section 4.1.2.

4.1.1 Internal Shape Function Sum Gradient Method

The internal elemental shape function derivative methods which we have imple-

mented to compare against the nodal patch recovery method, Section 4.1.2, collects

the shape function gradients at each quadrature point, multiples those gradients by

the plastic velocity gradient stored at that quadrature point, and sums the contribu-

tion from each shape function derivative. For the Hex8 elements we use in this work,

there are 8 shape function contributions to sum at each of the 8 quadrature points.

The gradient of the plastic velocity gradient tensor is calculated internally at each

quadrature point, independent of the plastic velocity gradient tensor at the other

quadrature points within the same element or neighbor elements. For this reason we

term this approach the internal shape function sum method.

Collecting the shape function gradient components at each point, we multiply the

gradient components by the plastic velocity gradient to construct a Rank-3 plastic

velocity gradient spatial derivative tensor at each quadrature point.

∇⊗∆LP =
8∑
i=1

∇rφi ⊗∆LPmn (4.3)

where φi represents the eight shape functions for the Hex8 elements used in this work

while r, m, and n are traditional Newton indices. From the Rank-3 gradient of the
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plastic velocity gradient, Eq (4.3) we apply the permutation tensor to find the curl,

described in Section 4.1.3 to calculate the Nye’s tensor.

These shape function gradients ∇rφi, are the same as those used by the MOOSE

framework to calculate the gradient of the displacement values at the quadrature

points. From this perspective the internal shape function sum method is straightfor-

ward to implement because it utilizes the existing FEM infrastructure. Information

from the surrounding elements is not used the internal shape function sum method;

thus this method needs to only query information at a single quadrature point to

perform the plastic velocity gradient derivative calculation. This method is therefore

more computationally efficient than the nodal patch recovery method, Section 4.1.2.

Additionally, unlike the nodal patch recovery method, the internal shape function

sum method allows the calculation of the GND density at the same point within the

simulation timestep whereas the nodal patch recovery method results in a lag in the

GND density calculation.

The downside to restraining the calculation to only the local quadrature point

information is that the resulting measure of lattice curvature will be calculated on

a point-wise basis and will be solely local. Geometrically necessary dislocations are

often implemented to introduce the effect of non-local lattice curvature into a crystal

plasticity simulation [7, 161]. In this internal shape function method, we rely entirely

on the shape functions to introduce continuity beyond the individual quadrature
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point; on the C0 Hex8 elements we have used in our simulations, this continuity is

provided only across quadrature points within the same element. Furthermore, unlike

the approach taken by Busso et al. and Meissoner et al., we have not implemented

specialized internal second derivatives of the shape functions at the quadrature points

[24, 118]. The first derivatives of the shape functions we have used in this method are

intended for finding the derivatives of nodal quantities at the quadrature points. De-

spite this significant shortcoming, we retain the internal shape function sum method

implementation results to contrast with the results from the nodal patch recovery

method.

4.1.2 Nodal Patch Recovery (ZZ-Patch) Gradient Method

MOOSE includes a nodal patch recovery mechanism, currently under develop-

ment, which was implemented following the ZZ-patch algorithm [208]. This function-

ality enables the recovery of quadrature point values, such as the stress, at the nodes:

a patch of quadrature points within the elements surrounding the node of interest

is used to fit the solution for a value of interest at the node [208]. In this method

we employ the nodal patch recovery functionality to determine a value for all nine

components of the plasticity velocity gradient at the element nodes.

Each component of the plasticity gradient increment, given here as C, is recovery
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at a node based on the patch of quadrature points in the elements touching the node

of interest, shown in Figure 4.1. The recovered component is given as an expansion

Cp = P · a (4.4)

where Cp is the patch recovered component of the plastic velocity gradient, P is the

array of polynomial factors corresponding to the dimension and recovery element

shape function term, and a is the array of unknown coefficients. By minimizing the

Figure 4.1: A midplane 2D representation of the bottom layer of the Hex8 elements and

the quadrature points (in outline) used to recover the plasticity velocity gradient at the

central node of interest (in red).

error between the directly computed component values C and the estimated patch

Cp values, Zienkiewicz and Zhu determined the minimization condition

a = A−1 · b (4.5)
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in which the definitions given below are used:

A =
∑n

i=1 P
T (xi, yi, zi) · P (xi, yi, zi) (4.6)

b =
∑n

i=1 P
T (xi, yi, zi) · C (xi, yi, zi) (4.7)

where A has the same value for all nine components of the plastic velocity gradient

[208]. The MOOSE implementation uses singular value decomposition for Eq (4.5).

The nodal patch recovery method provides a reasonable and feasible compromise

between the practically of widespread C0 FEM implementations and the requirement

for the GND representation of lattice curvature to depend on values beyond a single

element. The nodal patch recovery method produces a nonlocal measure of the plastic

velocity gradient derivative by relying on the values from all of the quadrature points

in point-neighbor elements; for the node of interest shown in Figure 4.1, all of the

quadrature point from the 8 elements sharing the node of interest are used in the

recovery calculation. Furthermore this dependence on neighboring element values

provides the resulting GND density calculation with a measure of mesh independence

because the solution is not bound within a single element.

The computational costs associated with this method are a consequence of the

methods in which the internal stateful material properties are reinitialized for the

nodal patch recovery call; the computational cost is not a consequence of the actual

recovery algorithm iteself [208, 147]. The use of the stateful plastic velocity gradient

from neighboring elements poses a challenge when running simulations in parallel:
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these values are not generally retrievable across processors. Additional functionality

to ghost the set of internal stateful properties on elements bordering processor divi-

sions has been added as a temporary fix to MOOSE [147]. This additional ghosting of

information also contributes to the non-negligible slowdown of the GND calculations

using the nodal patch recovery method.

The nodal patch recovery algorithm is run at the end of each nonlinear iteration

step in the simulation. Since the algorithm, Eqs (4.4) and (4.5), is run once for each

component of the plastic velocity gradient, it must be called a total of nine times per

node in the mesh at the end of each nonlinear iteration. The algorithm could also be

called at the end of the timestep iteration, but we have noted more computational

efficiency in calling the algorithm at the end of each nonlinear iterations. In this way

the value of the GND density lags the dislocation glide slip increment calculation by

only a single nonlinear iteration rather than by an entire timestep.

Rank-3 Gradient of Recovered Plastic Velocity Gradient

Once the nine plastic velocity gradient tensor components have been recovered

at the nodes, the same element shape functions used to calculate the displacement

gradients are multiplied with the plastic velocity gradient tensor components. This

treatment is identical to the approach used within the MOOSE framework to calculate

the gradient of any nodal field variable. This multiplication creates a Rank-3 gradient

of the plastic velocity gradient tensor at each of the quadrature points. Unlike the
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local Rank-3 gradient tensor calculated by the internal shape function sum method,

Section 4.1.1, the nodal patch recovery method applies the shape function gradients

to the nodal recovered plastic velocity components, ∆LPp .

∇⊗∆LPp = ∇rφ⊗∆LPp mn (4.8)

Furthermore, because the nodal patch recovery method employs the MOOSE frame-

work infrastructure to calculate the nodal variable gradient, this method does not

directly sum the contributions from the shape functions.

The Rank-3 tensor, Eq (4.8) is then used to calculate the Nye’s tensor using

the curl definition discussed by Das et al [36]. The approach to reduce the Rank-3

derivative to the Rank-2 curl is the same for both the internal shape function sum

method and the nodal patch recovery method and is discussed in Section 4.1.3.

4.1.3 Calculation of the Curl of the Plastic Velocity Gradient

Having calculated the Rank-3 derivative of the plastic velocity gradient tensor

with one of the two methods described in Sections 4.1.1 and 4.1.2, we now reduce

the gradient to the Rank-2 curl with the permutation tensor. As mentioned by Das

et al., several works calculate the curl of a strain measure to compute the Nye’s

dislocation tensor, with several inconsistencies in the varied approaches [36, 171].

Das et al. describe three different formulations for calculating the curl, all presented
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in a manner so as to be consistent with each other. Two of these formulations have

the same order as the definition of the Nye’s dislocation tensor we employ in this

work, Eq (4.1),

(∇× P )km = εijkPjm,i (4.9)

(∇× V )km = εijkPmj,i (4.10)

and it follows that these two formulation are equivalent when (Pjm)T = Vmj. Fol-

lowing the commonly used conventions for cyrstal plasticity FEM calculations of the

Nye’s dislocation tensor [7, 27], we employ the definition of the curl in Eq (4.10).

Das et al. and others [35, 108], define the dislocation density tensor as

α =
(
∇X × F P

)T
=
(
εijkF

P
mj,i

)T
(4.11)

showing that the transpose follows from the application of Stoke’s theorem to the

equation for the Burgers closure failure around GNDs [36].

To relate the plastic deformation gradient used in Eq (4.11) to the plastic velocity

gradient used in Eq (4.1), we recall from Chapter 2 the definition of the deformation

gradient, Eq (2.8). In the case of the plastic deformation gradient the change in

displacement term is related to the sum of the slips due to dislocation glide on all the

slip systems [42]:

F P = I + β = I +
∑
α

γŝ⊗ m̂ (4.12)



124

where I is the Rank-2 identity tensor and β is the crystallographic slip tensor equal

to the sum of the slips [41]. Noting that the rate form of second term in Eq (4.12)

is by definition the plastic velocity gradient in our crystal plasticity formulation, Eq

(2.64) we rewrite Eq (4.11) as a function of the plastic velocity gradient

α̇ ≈
(
∇X ×

(
I +LP

))T
=
(
∇X ×LP

)T
(4.13)

since the gradient of the identity tensor is zero. Thus our definition of the Nye’s

dislocation tensor is:

α̇km ≈ εijmL
P
kj,i (4.14)

Written out directly as it is implemented in the code, the Nye’s dislocation tensor is

computed at each quadrature point as

α̇ ≈


∂LPxz
∂Xy
− ∂LPxy

∂Xz

∂LPxx
∂Xz
− ∂LPxz

∂Xx

∂LPxy
∂Xx
− ∂LPxx

∂Xy

∂LPyz
∂Xy
− ∂LPyy

∂Xz

∂LPyx
∂Xz
− ∂LPyz

∂Xx

∂LPyy
∂Xx
− ∂LPyx

∂Xy

∂LPzz
∂Xy
− ∂LPzy

∂Xz

∂LPzx
∂Xz
− ∂LPzz

∂Xx

∂LPzy
∂Xx
− ∂LPzx

∂Xy

 (4.15)

Recall that the individual LP terms in Eq (4.15) are computed with one of the

approaches discussed in Section 4.1.1 or Section 4.1.2.

We further note that this computation of the Nye’s dislocation tensor is also

equivalent to the definition given by Shizawa and Zbib:

αij = εjklAil,k = εkljAil, k → εijmAkj,i (4.16)
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where A represents the rank-3 gradient of the plastic velocity gradient tensor [166].

The pattern of the indices in Eq (4.16) is identical to the definition of the Nye’s tensor

which we have implemented, Eq (4.14); thus the two approaches yield equivalent

results.

4.2 Geometrically Necessary Dislocation Density Measure

From the Nye’s tensor, Eq (4.2), we used a straightforward approach to calculate

the GND density,

ρGND =
cg
b

√
αijαij (4.17)

where ρGND is the density of geometrically necessary dislocations (1/mm2), cg is the

GND density coefficient, and b is the Burgers vector. This approach results in a

uniform value of GND density on all slip systems [124, 106]. The GND density has

units of 1/mm2, consistent with the representation of the mobile and immobile sta-

tistically stored dislocations previously discussed in Section 2.3. Our effective GND

density calculation follows the use of effective measures implemented by several other

researchers, both in computational efforts[51, 56, 108, 1] and experimental measure-

ments of GNDs[44, 162]. We note that this total form of GND density is much

simplified compared to other formulations which track the evolution of GND disloca-

tions on each slip plane, by edge and screw components, or by a combination of both
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[10, 45, 36, 161].

We find that our total approach, Eq (4.17), is justified both by the method in

which the GND evolution is coupled to the evolution of the glide dislocations and by

the inherent computational efficiency. In particular we couple the GND density to

the glide dislocation evolution through a modification to the mean free glide path,

Eq (2.69)

l
(α)
inv = βpath

√∑
β

ω(αβ)
(
ρ
(β)
mobile + ρ

(β)
immobile

)
+ c∗gρGND (4.18)

where c∗g is a fitting parameter, as done by other groups [138, 102]. We employ this

coupling to avoid artificially over-hardening the system, a concern which has been

raised about other methods of hardening the slip systems[124], with direct GND

contributions to the slip system strengths as a component of forest hardening by

modifying Eq (2.71). Furthermore, as noted by Ma et al., a unique solution does not

exist for GND populations separated onto individual slip systems at the boundary of

two adjoining crystals[109]. Since one of the objectives of this work is to study the

impact of grain boundaries on the mechanical response of polycrystalline metals, this

limitation is significant. Utilizing the effective total GND density, Eq (4.17) for all

slip systems avoids this conundrum.

Applying our modification solely to the mean free glide path length to account for

hardening due to GNDs, the integration of our GND capability into the CDD crystal

plasticity model framework is straightforward. We continue to use the same mobile
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and immobile dislocation densities, the statistically stored dislocations, as presented

in Section 2.3. With this coupled model we have introduced the ability to capture a

measure of non local effects within the CDD crystal plasticity framework.

4.3 Thin Single Crystal Beam Bending Benchmark Problem

We begin our presentation of the results from our GND enabled CDD crystal

plasticity model with a set of smaller simulations. In benchmarking our solution

against the results from problems defined in literature, we ensure that our implemen-

tation is physically sound. In this section we will discuss the results of our GND

implementation in a single crystal beam bending simulation.

For our first GND benchmark simulation we have selected a thin beam bending

problem. The beam problem allows us to inspect the evolution of GND density in

two different curvatures: an expansion of the lattice on the tension side of the neutral

axis and a contraction of the lattice on the compression side of the beam. The thin

depth of the beam allows us to examine the change of GND density along the width of

the beam while reducing the computational load that would occur with a thick beam

simulation. Given the total measure of our GND density calculation, Eq (4.17), we

expect to have equal amounts of GND densities on both edges of the beam width and

a minimum of GNDs in the center of the beam at the neutral axis.
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We use this benchmark problem both to verify the calculation of the expected

GND density pattern and to explore the effect of the mesh size on the calculated GND

density solution. We have run this beam bending problem with both the internal

shape function sum method, Section 4.1.1, and the nodal patch recovery method,

Section 4.1.2, to calculate the plastic velocity gradient derivative. From Eq (4.14),

Eq (4.2), and Eq (4.17) the GND density determination is directly impacted by the

plastic velocity gradient derivative calculation method.

4.3.1 Thin Beam Geometry and Boundary Conditions

We have modeled a thin beam of nickel in a similar fashion to the problem con-

structed by Ohashi to examine the evolution of GND density [136]. Our thin beam is

a 0.2 mm by 0.1 mm nickel plate, with a bending displacement of ± 1.0×10−5 mm,

applied over a 1 second duration [136], as illustrated in Figure 4.2.

The single nickel crystal is oriented such that the (111̄) plane normal lies along the

z-axis and the [101] direction is parallel to the x-axis. The Bunge Euler angles used

to achieve this orientation are φ1 = 60o, Φ = 125.3o, and φ2 = 45o. The displacement

loading conditions, shown in Figure 4.2, are applied normal to the (111̄) plane, and

the base of the beam is fixed in all three directions.
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Figure 4.2: A representation of the thin beam benchmark geometry used to evaluate the

evolution of GND density in the CDD crystal plasticity model, with displacement boundary

conditions shown at the top of the beam to introduce a bending motion.

Table 4.1: The set of varied y dimension depths of the thin beam, Figure 4.2, where the

length of the cubic Hex8 elements is determined by the beam depth. The corresponding

number of elements in the x direction width and in the z direction height are also given.

Varied Depth (mm) Elements in Width Elements in Height

0.01 10 20

0.0667 15 30

0.005 20 40

0.004 25 50
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In this convergence study we varied the depth of the beam, in the y direction,

along with the number of elements in the beam width and height, x and z directions,

to ensure the use of cubic Hex 8 elements with equal length edges. In all of the

simulations performed in this section we maintain a single element thickness through

the beam depth, as done by [136]. To maintain cubic Hex8 elements, we vary the

depth dimension of the beam, indicated in Figure 4.2; thus a finer mesh will have a

thinner depth. The set of depth dimensions and the number of Hex8 elements in the

width and height dimensions are listed in Table 4.1.

Crystal Plasticity Model Parameters

The elastic constants used in this set of simulations are for nickel, [65], and these

values and the dislocation hardening parameters are given in Table 4.2. The CDD

dislocation glide parameters are taken from a dislocation dynamics study of single

crystal aluminum [177]; we have elected to use these dislocation evolution parameters

because aluminum and nickel are FCC materials with higher stacking fault energies.

The dislocation density evolution parameters are given in Table 4.3, and the glide

slip systmes for an FCC material, Table 2.2 are used in these simulations.

In this study we have elected to remove the effects of cross slip and have set the

associated dislocation evolution and cross slip material properties parameters to zero

in Table 4.2 and Table 4.3.
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Table 4.2: Constant material parameter values used in the single crystal nickel simulations

of the thin beam bending benchmark.

Parameter Value Description

C11 246.5×103 MPa Elastic constant, [65]

C12 147.3×103 MPa Elastic constant, [65]

C44 124.7×103 MPa Elastic constant, [65]

µ 94.7×103 MPa Shear modulus, [65]

b 2.48×10−7 mm Burgers vector,[65], Eq (2.59)

γ̇o 4.0×10−2 Reference strain rate, Eq (2.65)

αmbh 0.4 Dispersed barrier coefficient, Eq (2.71)

Ωαα 1.0 Self-hardening coefficient, Eq (2.71)

Ωαβ 0.2 Latent-hardening coefficient, Eq (2.71)

ωαα, ωαβ 1.0 Mean free glide path, Eq (2.69)

Rc 15b Annihilation radius of capture, Table 2.4

τps 19.47 MPa Isotropic Peierls strength, Eq (3.2)
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Table 4.3: Values of the dislocation evolution parameters used in the thin beam bending

simulations to compare the approaches of calculating the plastic velocity gradient derivative.

These parameters, for the CDD dislocation evolution model, Eq (2.67) and Eq (2.68), are

appropriate for an FCC material and are slight modified from the values determined by

[177] for nickel based on fitting conducted as supplemental component of this work.

Dislocation Evolution Interaction Constant Value

Frank-Read generation α1 0.04

Mobile-mobile annihilation α2 4.0 [177]

Dislocation locking α3 0.002 [177]

Locked dislocations freed α4 0.002 [177]

Cross slip α5 0.0

Immobile-mobile annihilation α6 4.0

Initial total mobile dislocation density ρmobileo 1.44×106 1/mm2 [157]

Initial total immobile dislocation density ρimmobileo 1.44×106 1/mm2 [157]

Unlike the approach taken by Ohashi [136], we allow the crystal slip systems

to harden in response to dislocation density growth, as indicated by the non-zero

hardening parameters in Table 4.2. Both statistically stored dislocations, directly,

Eq (2.71), and geometrically necessary dislocations, indirectly, Eq (4.18) contribute

to the slip system hardening. Thus we expect to see an increase in the slip system
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strengths, particularly at the beam edges, as a result of GND density growth. The

effect of the GND density on the active slip system strength, in addition to the pattern

of calculated GND densities, will be used to evaluate the two methods of calculating

the plastic velocity gradient and thus the GND density.

4.3.2 Thin Beam Bending Results

In this section we distinguish between the internal shape function sum, Section

4.1.1, and the nodal patch recovery, Section 4.1.2, methods of calculating the plasticity

velocity gradient derivative and thus the GND density values. We compare these

two methods both in terms of convergence of the solutions. The results of the mesh

convergence study are shown in Figure 4.3 for the internal shape function sum method

and in Figure 4.5 for the nodal patch recovery method. In these figures the quantities

of interest are sampled along the width of the beam at half the beam height in the

undisplaced mesh, that is at z = 0.1mm, at the end of the simulations when the

complete displacement loading conditions have been applied.

The value of the GND density calculated with the internal shape function sum

method is essentially zero: the calculated GND density value is 18 orders of magnitude

smaller than the initial glide dislocation density. This zero result is the consequence

of calculating the derivative of the plastic velocity gradient within single elements.
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creasing mesh element density

0.00 0.02 0.04 0.06 0.08 0.10
Position along Beam Width (mm)

0.00e+00

2.50e-13

5.00e-13

7.50e-13

1.00e-12

1.25e-12

1.50e-12

1.75e-12

Ge
om

et
ric

al
ly

 N
ec

es
sa

ry
 D

isl
oc

at
io

ns
 (1

/m
m

2 )

0.01 mm Depth
0.00667 mm Depth
0.005 mm Depth
0.004 mm Depth

(b) Internal shape function sum method:

Total GND density profile variation with de-

creasing beam depth and increasing mesh
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Figure 4.3: The internal shape function sum method, discussed in Section 4.1.1, shows

good convergence in the solution of the effective stress, Figure 4.3a, but only poor conver-

gence in the solution of the GND density. The calculated GND density is numerically zero.

Nonetheless, in examining the pattern of the low GND densities, we note the increasing

divergence of the calculated GND density at the edges of the beam, Figure 4.3b, as an indi-

cation of the mesh dependence of this approach. These results are taken across the width of

the beam at half of the beam height and correspond to the final bending load application.

Despite this result, examining the pattern of the GND density provides useful insights

into the reliability of the shape function sum method. The results vary significantly

with increasing number of elements in the mesh: the value of the GND density changes
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by an order of magnitude among the four different beam depths and finite element

mesh considered as shown in Figure 4.3b.

The effective stress response for the internal shape function sum method is nearly

as converged across the different beam depths and mesh densities, Figure 4.3a as

is the effective stress response for the nodal patch recovery method, Figure 4.5a.

The converged behavior of the stress occurs because the calculated GND density

is approaches zero and thus the stress is not influenced by the GND density or its

variation. Nonetheless the near zero GND density values and the lack of convergence

in the GND density values clear demonstrate the dependence of the internal shape

function sum method on the mesh and mesh size.

The mesh dependence of the internal shape function is also demonstrated in the

distribution of the GND density across the entire beam face. In Figure 4.4b the GND

density is shown on the 0.005mm depth beam, with 800 elements, for the internal

shape function method. The GND distribution from the internal shape function

method resembles a patchwork solution, with only a general trend of higher GND

density on the edges of the beam and generally lower GND densities near center of

the beam. This voxel-type result, with significant variation in the results calculated

in neighboring elements, highlights the solely local nature of this method. The lack

of convergence in the GND density values clearly demonstrates the dependence of the

internal shape function sum on the mesh density.
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(a) Internal shape function sum method:

Effective Second Piola Kirchhoff stress

(b) Internal shape function sum method:

Distribution of the GND density

Figure 4.4: While the effective stress demonstrates the classical smooth stress distribution

pattern expected in a beam bending problem, the GND density calculated with the inter-

nal shape function sum method demonstrates significant variation and pixelation. These

results are shown for the 0.005mm depth beam under the final bending load. The beam

displacement shown in these figures has been scaled by a factor of 100 for clarity. The

original beam geometry is shown in outline for reference.

In contrast the GND results from the nodal patch recovery method demonstrate

both solution convergence, Figure 4.5, and a smooth distribution of the calculated

solution across the beam face, Figure 4.6b. The results for the nodal patch recovery

method of calculating the plastic velocity gradient derivative and the Nye’s tensor
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show acceptable convergence with decreasing beam depth and increasing mesh den-

sity: the distribution of the GND density demonstrates a measure of convergence

in the center of the beam and tight convergence of the solution at the beam edges,

Figure 4.5b.
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(b) Nodal patch recovery method: Total

GND density profile variation with decreas-
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Figure 4.5: The Nodal Patch Recovery method, discussed in Section 4.1.2, shows good

convergence in the solution of the effective second Piola-Kirchhoff stress, Figure 4.5a, and

acceptable convergence in the GND density at the edges of the beam, Figure 4.5b. The

general convergence of the GND density calculated with this method is an indication of the

measure of mesh independence provided by the nodal patch recovery method. These results

are taken across the width of the beam at half of the beam height and correspond to the

final bending load application.
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Unlike the pixelated results of the internal shape function sum method, Figure

4.4b, the GND results from the nodal patch recovery demonstrate smooth bands,

with high GND densities calculated at the beam edges and a lower GND density

value calculated at the beam neutral stress axis, Figure 4.6b.

(a) Internal shape function sum method:

Profile of the effective Second Piola

Kirchhoff stress as shown on the 0.005mm

depth beam at complete loading.

(b) Internal shape function sum method:

Distribution of the GND density as

shown on the 0.005mm depth beam un-

der the final bending load.

Figure 4.6: Both the effective second Piola-Kirchhoff stress and the GND density distri-

bution demonstrate smooth distributions across the 0.005mm depth beam, with the higher

values for both quantities occuring on the edges of the beam as expected. The beam dis-

placement shown in these figures has been scaled by a factor of 100 for clarity. The original

beam geometry is shown in outline for reference.
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We note the variation of the GND density distribution in Figure 4.6b at both

the upper middle of the beam and at the lower corners of the beam. The high

concentrations of GND densities at the lower corners of the beam are the effect of the

fixed boundary conditions applied on the lower edge of the beam as shown in Figure

4.2. This increase in GND density was also noted by Ohashi in his original study

with this benchmark problem [136]. We hypothesis that the band of increased GND

density in the upper center of the beam may be a result of allowing the crystal slip

systems to harden, a crystal plasticity implementation which Ohashi did not employ.

Nonetheless this unexpected band warrants further investigation.

Finally, to directly compare the two methods of calculating the plastic velocity

gradient derivative, ∇·LP , and the effect of these methods on the calculated solutions

in the benchmark beam bending problem, we have compared four quantities of in-

terest from the 0.005 mm beam depth simulations. In addition to the effective stress

response and the GND density quantities which we have compared previously, we

also introduce comparisons of mobile dislocations and the slip system strength for a

representative active slip system. Since the solutions of the mobile dislocation density

and slip system resistance were consistently similar among six active slip systems, we

have selected a single slip system, (11̄1)[1̄01], for use in the comparisons shown in

Figure 4.7.
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Figure 4.7: The comparison of the Nodal Patch Recovery and Internal Shape Function

Sum methods demonstrate a significant difference in calculated quantities of interest, on

beams with a depth of 0.005mm. These results are sampled across the beam at half of the

beam height under the final bending displacement.
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We note that the value of the GND density from the internal shape function

method is significantly less than the GND density calculated with the nodal patch

recovery method, as shown in the comparison in Figure 4.7b. Since the GND density

calculated with the internal shape function sum method is several orders of magnitude

smaller than the mobile dislocation density, see the mobile dislocation density from

a representative active slip system in Figure 4.7c, the high variation in GND density

is not propagated to the slip system strengths or to the overall stress response. The

stress response for the internal shape function sum method is dominated by the mobile

dislocation densities.

In Figure 4.7 the low value of GND density predicted by the internal shape function

sum method results in a softer response of the crystal, with the mobile dislocations

on active slip systems providing the main source of hardening. In contrast the impact

of the GND density as computed with the nodal patch recovery method, through

the mean free glide path, Eq (4.18), is clearly seen on the representative active slip

system resistance, Figure 4.7d and on the effective stress response, Figure 4.7a.

In light of the smooth and convergent results from the nodal patch recovery

method, we proceed to use only this method in the following two sections. The

nodal patch recovery method predicts the expected distribution pattern and thus is

a more reliable model for GND density calculation in addition to demonstrating a

better measure of mesh independence.
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We do, however, note that the nodal patch recovery method requires significantly

more computational time: for the 0.005 mm depth, 800 element mesh beam sim-

ulation the nodal patch recovery method required 306.87 hours on 4 processors to

complete while the internal shape function sum method only required 1.027 hours on

6 processors. The significantly longer computation requirements of the nodal patch

recovery method are a result of the reinitalization of stateful properties algorithm in

the MOOSE framework, as discussed in Section 4.1.2. Reducing the computational

load and the simulation runtime of the nodal patch recovery method is a priority of

future work with the GND model.

4.4 Bicrystal in Shear Simulation

In our second benchmark problem we examine the results of the nodal patch recov-

ery method for calculating the GND density in an aluminum bicrystal under shear

loading. This bicrystal simulation, replicated from the experiment and simulation

comparison conducted by Ma et al. [109] is complementary to the beam bending

problem in Section 4.3.2. Where the beam bending problem used a single element

depth geometry under a combination of tensile and compression loading, this bicrystal

problem applies the GND model addition in a thick geometry under shear loading,

completing the set of common loading conditions under which we have tested the
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GND model addition to the CDD crystal plasticity framework.

The clear focus of this benchmark problem is on the grain boundary between the

two crystals. The emphasis on the relatively large grain boundary in the problem

allows us to explore how the GND model addition captures the impact of the grain

boundary in the overall stress response of the crystals.

4.4.1 Bicrystal Geometry and Boundary Conditions

The bicrystal used in this benchmark problems includes a grain boundary on the

x-z plane, which divides the geometry into two crystals of equal height.

-ux

+ux

3.1mm

2.2mm

2.0mm
x

y

z

Figure 4.8: The bicrystal problem, adapted from Ma et al. [109], with the grain boundary

located on the midway vertical plane. In addition to the shear loading in the x-direction

shown, the displacements in the y- and z-directions are fixed on the top and bottom surfaces.
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Table 4.4: The set of Bunge Euler angles used in the set of three simulations of the

bicrystal problem, taken from [108, 109]. The geometry of the bicrystal problem is shown

in Figure 4.8, and the notation top grain and bottom grain correspond to the orientation

of the bicrystal as shown in the schematic.

Simulation Grain Block Bunge Euler Angles (degrees)

φ1 Φ φ2

Single crystal Top grain 3.4 37.6 36.5

Bottom grain 3.4 37.6 36.5

Small boundary angle Top grain 277.0 32.3 37.4

Bottom grain 264.7 32.3 44.3

Medium boundary angle Top grain 74.3 37.1 50.1

Bottom grain 87.9 36.7 52.9

Parallel to the grain boundary on the edges of the bicrystal geometry, shear dis-

placement boundary conditions are applied, as shown in Figure 4.8. The shear dis-

placement rate is ±4.03×10−4 mm/s, on each face, in the x direction as indicated in

the schematic. The displacements in the y and z directions are set to zero on the

same two faces on which the shear loading is applied.

Using the set of small and medium grain boundary misorientation angles defined
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by [109] we can examine the contribution of the GND model addition to the simulation

of polycrystals. Nye’s tensor approach is not suitable for modeling high misorientation

angle boundaries [108]; thus we have elected to model only the small and medium grain

boundary angle bicrystals. As done by [109] we also include a single crystal simulation.

In the simulation run for the single crystal we have used the same mesh as for the

two bicrystal problems, shown in the schematic in Figure 4.8, and have assigned the

same grain orientation to both grain blocks, as indicated in Table 4.4. These sets

of bicrystal orientations are selected in view of the observation of limitations on the

Nye’s tensor approach for modeling high misorientation angle boundaries [108].

Crystal Plasticity Model Parameters

The elastic constants and Burgers vector used in this set of simulations are for

aluminum [65]. As in the thin beam bending simulations, Section 4.3, the CDD

dislocation evolution parameters are taken from [177], which fit the CDD evolution

parameters for FCC aluminum. The FCC slip systems, Table 2.2, are used in these

simulations with an initial total dislocation density of 1.0×106 mm−2 [10], split evenly

among the initial mobile and initial immobile dislocations. The set of material pa-

rameters used in the bicrystal simulations are listen in Table 4.5 and the dislocation

evolution parameters are given in Table 4.6.
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Table 4.5: Constant material parameter values used in the aluminum sheared bicrystal

benchmark simulations.

Parameter Value Description

C11 108.2×103 MPa Elastic constant, [65]

C12 61.3×103 MPa Elastic constant, [65]

C44 28.5×103 MPa Elastic constant, [65]

µ 26.5×103 MPa Shear modulus, [65]

b 2.863×10−7 mm Burgers vector,[177], Eq (2.59)

γ̇o 1.0×10−2 Reference strain rate, [177], Eq (2.65)

αmbh 0.4 Dispersed barrier coefficient, Eq (2.71)

Ωαα 1.0 Self-hardening coefficient, Eq (2.71)

Ωαβ 0.2 Latent-hardening coefficient, Eq (2.71)

ωαα, ωαβ 1.0 Mean free glide path, Eq (2.69)

Rc 15b mm Annihilation radius of capture, Table 2.4

τps 2.65 MPa Isotropic Peierls strength, Eq (3.2)

In the following results section we present simulation results for each of the three

bicrystal grain boundary orientations, Table 4.4, on a course 640 element mesh. In this

coarse mesh each Hex8 element length is approximately 3 mm. While this large mesh

is not composed of ideally cubically shaped Hex8 elements, the coarser mesh allows
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us to run the bicrystal simulations to the onset of plasticity despite the significant

computational load of the nodal patch recovery method as discussed in Section 4.3.2.

Table 4.6: Values of the dislocation evolution parameters used in the simulations of the

sheared bicrystal, Figure 4.8. These parameters are for the CDD dislocation evolution

model, Eq (2.67) and Eq (2.68) and are fit for FCC aluminum [177].

Dislocation Evolution Interaction Constant Value

Frank-Read generation α1 0.02 [177]

Mobile-mobile annihilation α2 4.0 [177]

Dislocation locking α3 0.002 [177]

Locked dislocations freed α4 0.002 [177]

Cross slip α5 0.0

Immobile-mobile annihilation α6 0.1 [177]

Initial total mobile dislocation density ρmobileo 0.5×106 1/mm2 [10]

Initial total immobile dislocation density ρimmobileo 0.5×106 1/mm2 [10]

4.4.2 Bicrystal in Shear Results

In this section we present the simulation results from the series of sheared bicrystal

simulations. We focus on the variation among the single crystal and two bicrystal
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simulations to determine that the GND model addition to the CDD crystal plasticity

framework is sensitive to changes in the grain boundary angle. Because of our interest

in the distribution patterns of the solution variables on the bicrystals, we present the

results spatially across the bicrystal rather than as averaged stress-strain curves.

To mitigate any impact from the free surfaces, we inspect the results on the

midplane of the bicrystal geometry, at z = 0.1 mm on the undeformed mesh, see

Figure 4.8 for reference. These results are sampled at the onset of plasticity when

the bicrystal has only been subjected to an effective Lagrangian strain of 2.68×10−4

s−1. These simulations have run for approximately 1008 hours on 44 processors each.

As noted before in Section 4.3.2, the computational overhead associated with the

nodal patch recovery algorithm used to calculate the GND density is large. This

early collection of the solution results enables us to inspect the distribution patterns

before any significant hardening of the crystal has occurred.

At this early point in the deformation, the effective second Piola Kirchhoff stress

response of the single crystal and the two bicrystals is nearly identical, Figure 4.9.

The single crystal, Figure 4.9a, demonstrates slightly higher stresses at the corners

of the mesh than either the small grain boundary angle bicrystal, Figure 4.9b, or the

medium grain boundary angle bicrystal, Figure 4.9c. All three simulations display

pockets of lowest stress on the center faces parallel to the y axis. This similarity in

the effective stress pattern among all three crystal simulations indicates that the
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(a) Single crystal (b) Small boundary angle bicrystal

(c) Medium boundary angle bicrystal

Figure 4.9: The effective second Piola-Kirchhoff stress, shown on the midplane of the

bicrystal geometry (z = 1.0mm), demonstrates little change across the center of the bicrystal

geometry among the three different misorientation angle simulations, see Table 4.4. These

presented results are sampled at the onset of plasticity; thus any variation in the effective

stress profiles across the three simulations due to the GND density, Figure 4.10, may not

yet be observable.
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solutions are still dominated by an elastic stress response at this point in the simu-

lation. This similar stress response is in line with our expectations for the onset of

plasticity.

The influence of the different grain boundaries, listed in Table 4.4, is clearly

demonstrated by the distribution of the GND densities. Both the pattern and the

intensity of the GND density varies among the three different simulations, shown in

Figure 4.10. Note that the midplane indicator line intersects the bicrystal geometry

at the grain boundary, which aids in distinguishing the patterns of GND distributions.

In the single crystal simulation, Figure 4.10a, the GND distribution follows a

similar pattern as in the beam bending simulations in Section 4.3.2: higher concen-

trations of GNDs are seen on the edges of the beam. This distribution pattern echos

the effective stress pattern, and a minimum of GND density is observed in the center

third of the single crystal geometry.

While both bicrystals demonstration concentrations of the GND density on either

side of the grain boundary, the response of the two bicrystal simulations differs from

the single crystal simulation and from each other. We note that in both bicrystal

simulations the concentration of GND density is lowest along the grain boundary

region. The concentrations of GNDs within the grains of the two bicrystals clearly

demonstrate the influence of the grain boundary on the microstructure evolution

within the grain interiors.
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(a) Single crystal (b) Small boundary angle bicrystal

(c) Medium boundary angle bicrystal

Figure 4.10: The variation of the GND density is evident with the increasing grain bound-

ary misorientation angle, even at the onset of plasticity. In the single crystal, Figure 4.10a,

the GND density is concentrated at the lateral edges, while in the bicrystals the concentra-

tion of GND density is higher in the regions away from the boundary. In the small grain

boundary angle simulation, Figure 4.10b, the GNDs cluster in the corners. The concentra-

tion of GND density clusters in both grains is larger in the medium grain boundary angle

simulation, Figure 4.10c. These results are from the onset of plasticity.
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In the case of the small angle grain boundary bicrystal, Figure 4.10b, the clusters of

higher GND density demonstrate a noticeable difference between the top and bottome

grains. While the bottom grain has a near even distribution of GND density across

the lower edge, the top grain shows clusters of GND density in the upper corners,

away from the grain boundary.

The medium grain boundary angle bicrystal demonstrates an unequal GND den-

sity pattern in each of the two grains, Figure 4.10c. While the bottom grain retains a

similar GND density pattern and intensity as we observed in the small angle bicrystal,

in the top grain the GND density cluster forms a distinct pattern. The upper right

corner of the top grain has a significantly larger and more intense concentration of

GND density compared to the small angle bicrystal top grain. The medium grain

boundary bicrystal also demonstrates a GND density in the center of the top grain.

The centered GND cluster has a similar intensity to the bottom grain, also the top

grain GND cluster is centered in the middle of the top grain.

The significant variation in the response of the GND density among the single

crystal and the two bicrystal simulations indicates that the GND model addition to

the CDD crystal plasticity model is sensitive to changes in the grain boundary angle;

therefore, this model is a suitable tool for capturing the influence of grain boundaries

on the mechanical response of polycrystalline geometries.



153

4.5 Conclusions and Future Recommendations

In this chapter we have introduced a method for calculating a total density of

geometrically necessary dislocations through the application of a nodal ZZ-patch re-

covery algorithm. We have applied this model to a set of two different benchmark

problems to verify the behavior of the GND density model. This nodal patch recov-

ery GND model demonstrates mesh independence of the solution. Furthermore the

model shows observable sensitivity to changes in the grain boundaries in polycrys-

talline simulations. Because of these attributes, the GND model we have presented

here is an acceptable addition to the CDD crystal plasticity framework.

Paramount among the potential future work for this GND density model addition

is the need to improve the method of collecting the plastic velocity gradient, LP ,

material property for the nodal patch recovery zz-patch algorithm. The additional

computational time required by the nodal patch recovery material property reinitial-

ization process is a significant hindrance. The two orders of magnitude increase in

compute time for the nodal patch recovery method, as discussed in Section 4.3.2,

prevents the current GND model addition from being used in any large strain prob-

lems of interest at present. Once these numerical issues are addressed, expanding

the range of element point neighbors for the nodal patch recovery method, Section

4.1.2, to second and third levels could aid in expanding the mesh independence of the
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approach.

The GND model addition to the CDD crystal plasticity framework can be applied

to problems in which size effects or grain boundary roles are important to the mechan-

ical behavior response. The results of this combined crystal plasticity framework can

be used to study the impact of realistic and complex polycrystalline microstructures

in a variety of operating enviroments.
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CHAPTER 5. TWINNING VOLUME EVOLUTION

MODEL ADDITION

In addition to the α iron used in the reactor pressure vessel, FCC nickel-based

super alloys, such as Inconel 690 and Inconel 718, are used in the steam generation

components of current nuclear reactor power plants [25]. Nickel-based alloys are

also being considered for use as structural materials in GenIV molten salt reactors

[165, 199]. In these applications the nickel alloys are exposed to long term high

temperature operating conditions, albeit under lower pressures than in current light

water reactor pressure vessels. Thermal aging, therefore, in addition to irradiation

damage, must be considered in the study of the microstructure evolution of nickel

alloys in nuclear power plant applications.

The use of nickel alloys for piping materials in chemical industry processing plants

over decades provides a set of information on the in-operation aging of commercial

nickel alloys. Several studies have analyized the microstructure of nickel-based alloys

after 50,000 hours to 70,000 hours of in-service operation at temperatures of 450oC

to 600oC [184, 175, 164, 193, 123]. Among the several precipitates and particles

which form in these complex alloys is the formation of Long Ranged Ordered (LRO)

Ni2Cr precipitates [112]. These coherent precipitates form within nickel alloys after

long term exposure to relatively low temperatures [200]. Alloying components such
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as iron and molybdenum will shift the temperature range and aging time required

for these LRO precipitates to form [122, 188], yet these precipitates persist as a

microstructural feature in nickel alloys. These LRO precipitates are also known to

increase the hardness of nickel based alloys [112, 201].

The extensive aging time to form the LRO precipitates in commercial nickel based

alloys is not conducive to studying the impact of LRO precipitates on microstructures.

Many research groups have thus selected model binary alloys, which form the LRO

precipitates after reasonable aging times [113, 183, 200, 172]. These studies connect

the formation of LRO Ni2Cr precipitates with increased hardness of the model alloy.

Generally 10,000 hours has been determined to be enough aging time to allow for

the complete formation of the LRO precipitates in the binary model alloy [183]. The

relative simplicity of the binary Ni2Cr model alloy offers the ability to focus on the

interaction of the LRO precipitates with mobile dislocations during deformation, using

our CDD crystal plasticity framework.

5.0.1 Micropillar Compression Experiments and Simulations

Micropillar compression experiments were first introduced by Uchic et al. and

Dimiduk et al. as a way to study the effect of smaller sample size on the stress

response of a material [190, 38]. Micropillar experiments have contributed to the un-
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derstanding of how different deformation mechanisms control the material behavior

as the sample size changes. Simulations have also been applied to micropillar com-

pression problems, particularly dislocation dynamics and crystal plasticity simulation

models. Dislocation dynamics simulations of micropillar compression tests track indi-

vidual dislocation lines and thus can identify different types of dislocation and source

behavior with varying micropillar diameter and dislocation densities [3, 127, 83, 43].

For these advantages, dislocation dynamics simulations are limited to smaller ge-

ometries, often modeling only the micropillar itself, because of the computational

load of tracking each individual dislocation. Additionally, dislocation dynamics sim-

ulations often apply larger strain rates than are applied in micropillar compression

experiments [70]. Both of these limitations can be mitigated with crystal plasticity

models, although the ability to track individual dislocations is lost in the continuum

level approach. Since crystal plasticity models track continuum level dislocation den-

sities, as we’ve discussed in Section 2.3.2, the appropriate model additions to capture

the size-effect observed in micropillars is an area of current research. In particular, for

small diameter micropillars, the forest-type hardening model used to capture disloca-

tion interactions in bulk materials is not sufficient to capture the increase in strength

of micropillars [38]. Several crystal plasticity studies have suggested the use of strain

gradient terms, including the geometrically necessary dislocations we discussed in

Chapter 4 [92, 206, 105], although the applicability of these terms to micropillars
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remains a subject of some disagreement in the field [38, 70].

Setting aside the disagreements about the role of geometrically necessary disloca-

tions, simulation studies of micropillars agree on the importance of boundary condi-

tions to correctly model the micropillar. Akarapu et al. and Kuroda both demonstrate

a significant variation in the simulation results with varied applications of the loading

boundary conditions on top of the micropillar [3, 92]. The approaches used for the

boundary conditions at the bottom of the micropillar vary significantly. In disloca-

tion dynamics simulations, which model only the micropillar itself, fixed displacement

boundary conditions are applied to the pillar base while dislocations are allowed to

exit the surface [3]. Crystal plasticity studies which employ the same micropillar-only

geometry and fixed boundary conditions on the pillar base [70, 38, 38] artificially pre-

vent the continuum level representation of the micropillar from interaction with the

substrate.

Recent studies have demonstrated the importance of including the substrate ge-

ometry on the stress-strain curve predicted by the simulation for an isotropic plastic

material [47] Other crystal plasticity simulations of micropillar compression tests have

included the substrate within the meshed problem geometry, despite the additional

computational load introduced [155, 74]. These crystal plasticity studies have ad-

dressed the computational load associated with including the substrate geometry by

reducing the number of elements in the mesh through mesh coarsening. The aggres-
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sive mesh coarsening employed in these studies could, however, fail to fully capture

the interactions of the substrate and the micropillar.

Beyond the study of size-dependence of material strength, micropillar compres-

sion tests are useful for determining material properties such as yield stress and work

hardening behavior [38]. In cases where limited amounts of material are available, as

is the case with the 10,000 hours thermally aged Ni2Cr alloy, micropillar compres-

sion tests offer the ability to determine the stress-strain behavior in a more direct

approach than through nanoindentation, another common experimental technique.

Furthermore Cruzado et al. argue that for a nickel-based alloy with a deformation

behavior governed by dislocation-particle interactions, micropillar compression tests

can be used to directly calibrate a crystal plasticity model [34]. Because of the limited

amount of the 10,000 hours aged binary alloy, micropillar compression testing was se-

lected as the method to mechanically test single crystals of both aged and unaged

Ni2Cr alloy. Crystal plasticity is a useful simulation tool in this situation to extend

information from experimental data sets limited by available material to polycrys-

talline structures as we have shown in Section 3.4. We have therefore focused on

replicating the micropillar compression tests with our CDD crystal plasticity model

as a first step towards the prediction of engineering scale mechanical behavior based

on the evolution of the thermally aged microstructure of nickel based alloys.

In this chapter we present first the addition of a twinning model to the CDD
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crystal plasticity framework, with coupling between the glide and twin dislocations.

We benchmark our results from the twinning model implementation with a set of

verification tests with compression and tensile loads in orientations know to promote

and to mitigate twinning growth. In the second part of this chapter we present

preliminary results of the micropillar compression simulations to demonstrate the

impact of the twinning model addition to the CDD crystal plasticity framework.

5.1 Twinning Model Implementation

Experimental data on a set of [111] and [100] oriented micropillars was collected

on both unaged and 10,000 hours aged single crystals of Ni2Cr alloy [189, 182]. Dur-

ing the experimental testing of these micropillars, twinning was observed in the [100]

orientation micropillars [181, 188]. Thus, in order to model the active physical defor-

mation mechanisms active in the Ni2Cr alloy, we must add a deformation twinning

model to our CDD crystal plasticity framework. We justify the use of the simplis-

tic twinning model [76] over other twinning models developed for nickel-based alloys

[77, 169] with the small size of the LRO precipitates. Because the average diameter

of the LRO precipitates is under 20 nm these precipitates cannot hold both the tail

and lead partials of a dislocation in order to nucleate a twin within the precipitate

[89]. Given this physical limitation on the twinning mechanisms active in our binary
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model alloy of interest, Ni2Cr, we have focused our work in this chapter on the crystal

plasticity framework development to enable two different contributions to the plastic

velocity gradient.

Following [198] we incorporate the deformation twinning into the plastic velocity

gradient as a pseudo-slip mechanism. We implement a variation of the twinning

model introduced by Kalidindi with an additive decomposition of the plastic velocity

gradient.

LP = (1− ft)
∑
α

γ̇αsαo ⊗mα
o +

∑
β

γ̇βsβo ⊗mβ
o (5.1)

where ft is the total volume fractions of the twins on all of the twin systems, and

the superscript α indicates the glide slip systems and the superscript β indicates

the twinning system. As we discussed in Section 2.2.3, the glide slip systems for

an FCC material are given in Table 2.2 and the twin systems are listed in Table

2.5. Implicit in Eq (5.1) is the assumption that the twinned portions of the crystal

do not undergo additional dislocation glide, as assumed in [163]. We note that the

direction contribution of the twin shear into the plastic velocity gradient will allow

both glide and twin dislocations to influence the calculation of the geometrically

necessary dislocations discussed in Chapter 4.

The twin slip increment model we have implemented is the power law type model

first proposed by Kalidindi [75]. In incremental form the shear slip due to twinning
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is given as

∆γβ = γ̇o

(
τβ

gβtwin

)1/m

∆t if τβ > 0 and fT < flimit (5.2)

where we use the same shear reference rate γ̇o and power law exponent m as in the

glide dislocation velocity model, Eq (2.65) as suggested by [76]. The resistance of the

system to twinning, gβtwin is given by Eq (5.4). We introduce coupling to the CDD

glide dislocations through the twinning system resistance. The total twin volume

fraction, fT , used in the calculation of the plastic velocity gradient in Eq (5.1), is

calculated directly from the twin slip increment.

fT =
∑(

∆γβ

γtw
+ fβold

)
(5.3)

where γtw is the characteristic twin shear [76] and fβold is the volume fraction of twins

on β twin system from the previous timestep. For an FCC material, which we consider

here, the characteristic twin shear is 1/
√

2 [5]. Although the power law model, Eq

(5.2), has been described as phenomenological, we show in Chapter 6, for the case

of glide dislocations, how the power law model can be connected to physically based

dislocations through the Orowan relation.

We note that Kalidindi’s calculation of the Cauchy stress includes a rotation of

the elasticity tensor for the twinned volume fraction [76]. In our calculations of the

second Piola Kirchhoff stress and the related Cauchy stress we have not included this

rotation of the elasticity tensor for the twinned volume in our current implementation.

We justify this current simplification with the small volume of twins both predicted in
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our simulation and observed in the experimental data [181, 188]. Future development

of this constitutive twinning model for applications with larger twinning volumes from

more twin dislocations, including NiCr alloys such as Alloy 690 and Alloy 625, will

include the rotation of the elasticity tensor for the calculation of the stress.

5.1.1 Coupling to CDD Glide Dislocation Evolution

Interactions between glide dislocations and twins increase the resistance of the

crystal to the motion and growth of both dislocation types. In light of this observation

we have introduced coupling of the twin dislocation and glide dislocation evolution

through the resistance components of the two evolution models.

We treat the resistance of twin slip as an additive decomposition

gβtwin = gtw−o + gforest + gforest−twin (5.4)

where gtw−o represents the lattice friction contribution to the twin resistance, gforest

is the forest hardening from glide dislocations, Eq (2.71), and gtw−forest is a forest

hardening type term to account for the accumulation of twins. The lattice friction

twin system hardening has the simple form of

gtw−o = τps (5.5)

where, following the summary of [161] τps is the Peierls stress. The third term in

Eq (5.4) represents the hardening due to twins. Twins are known to increase the
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system hardening for noncoplanar systems over other coplanar systems [161]. Thus

several crystal plasticity models introduce twinning resistance models with different

treatments for coplanar and noncoplanar systems [76]. In our model we have adopted

a simpler approach in which we treat the contributions from all twin systems equally,

gforest−twin = αtfµ
√
fT (5.6)

which is similar to the approach used to calculate the forest hardening from glide

dislocations, Eq (2.71). We acknowledge that this form of slip resistance on the twin

systems calculates an equal value of resistance for all twin systems, both active and

inactive.

The influence of the twins on the evolution of the glide dislocation is incorporated

into the calculation of the mean free glide path, Eq (2.69), rather than directly into

the glide resistance. We modify the mean free glide path with a correction factor that

is a function of the total twin volume.

l
(α)
inv = βpath

√√√√∑β ω
(αβ)

(
ρ
(β)
mobile + ρ

(β)
immobile

)
1− fT

(5.7)

where the denominator is the twin volume correction factor [63]. As in Chapter 4

with geometrically necessary dislocations, we account for the additional obstacles to

glide dislocation only in the mean free glide path to avoid artificially overhardening

the glide slip systems.

The combination of the glide forest hardening term in the twin resistance ex-
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pression, Eq (5.4), allows us to complete the two-way coupling of these two different

deformation mechanisms.

5.1.2 Addition of LRO Precipitate Contribution to Glide Resistance

As small coherent particles within the disordered Ni2Cr alloy matrix, the small

LRO precipitates act as barriers to glide dislocation motion. We modify the glide

dislocation resistance, Eq (2.70) with an additional term for these precipitates

g(α) = g(α)o + g
(α)
forest + g

(α)
apb (5.8)

where g
(α)
apb is the weakly coupled anti-phase boundary shearing defined in Eq (2.74).

Given the small size and coherent nature of the LRO precipitates, we have adopted

the anti-phase boundary shearing model for tertiary γ′ particles, [89], to capture the

LRO precipitate interaction with mobile dislocations. This model is only used for the

simulations of fully formed LRO precipitates after 10,000 hours of thermal aging.

5.2 Single Crystal CDD with Twinning Simulations

Experimental observations of twin formation and growth in FCC materials have

established a conventional wisdom for those loading orientations which demonstrate

twinning. FCC materials are known to twin in the [100] orientation when loaded in
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compression but not in tension; conversely, tensile loading in the [111] orientation

demonstrates twinning while compression does not [110]. This expected behavior

is a consequence of the unidirectional nature of twins, which we have captured in

Eq (5.2). While the same twin systems receive the largest absolute shear stress in

the [100] orientation, only in compression are these shear stresses positive and thus

capable of promoting twin growth.

We use this set of four loading directions and orientations, [100] in compression,

[100] in tension, [111] in compression, and [111] in tension, to verify our general

implementation of the twin model addition to the CDD crystal plasticity framework.

The single crystal simulations were performed on a 1 mm3 cube mesh consisting of

216 Hex8 elements. Symmetric boundary conditions were used and a displacement

loading rate corresponding to a strain rate of ±1.0×10−3 s−1 was applied, depending

on the specified loading direction. The elastic constants and material parameters used

in this set of simulations are given in Table 5.1 and the glide dislocation evolution

parameters are given in Table 5.2.
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Table 5.1: The elasticity tensor and hardening material parameter values used in the CDD

crystal plasticity for twinning model addition simulations of single crystal Ni2Cr.

Parameter Value Description

C11 332.4×103 MPa Elastic constant, [20]

C12 186.8×103 MPa Elastic constant, [20]

C44 72.8×103 MPa Elastic constant, [20]

µ 72.8×103 MPa Shear modulus, [20]

b 2.52×10−7 mm Burgers vector, Eq (2.59)

αmbh 0.4 Forest hardening coefficient, Eq (2.71)

Ωαα, Ωαβ 1.0 Self- and latent-hardening coefficient, Eq (2.71)

ωαα,ωαβ 1.0 Mean free glide path, Eq (2.69)

τps 3.64 MPa Estimated isotropic Peierls strength, [176], Eq (3.2)

T 298 K Temperature, Eq (3.3)
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Table 5.2: Values of the dislocation evolution parameters used in the simulations for the

single crystal twinning model verification benchmark simulations. These parameters are

for the CDD dislocation evolution model, Eq (2.67) and Eq (2.68) and are fit for FCC

aluminum [177], and for the twinning evolution model.

Dislocation Evolution Interaction Constant Value

Frank-Read generation α1 0.04 [177]

Mobile-mobile annihilation α2 4.0 [177]

Dislocation locking α3 0.002 [177]

Locked dislocations freed α4 0.002 [177]

Cross slip α5 0.001

Immobile-mobile annihilation α6 0.1 [177]

Annihilation capture radius Rc 15b mm, Table 2.4

Initial mobile dislocation density ρmobileo 0.5×106 1/mm2 [10]

Initial immobile dislocation density ρimmobileo 0.5×106 1/mm2 [10]

Characteristic twin shear γtw 0.707, [161]

Twin forest hardening coefficient αtf 1.0×103, Eq (5.4)
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5.2.1 Twinning Verification Set Results

The results of our benchmark simulations, Figure 5.1, demonstrate the CDD twin-

ning model produces results in line with the conventional expectations. Compression

loading in the [100] orientation and tensile loading along the [111] orientation both

demonstrate twin volume growth.

The [111] orientation compression loading case demonstrates a minimal amount

of twin volume growth while the tensile [100] loading shows no twin volume growth,

as expected. We note that in both cases with twin volume fraction growth, Figures

5.1a and 5.1d, the effective stress response is around 10 MPa higher than for the

cases without twin growth, Figures 5.1b and 5.1c. This increased stress effect is more

pronounced in the [111] orientation where fewer glide dislocation systems are active.

The change of the effective stress response indicates that the twin slip increment

implementation has been included in the calculation of the stress through the plastic

velocity gradient modification, Eq 5.1.

We note that the volume of twin dislocations, even in the twin promoting loading

directions and orientations, is less than 1%. This low value of twin volume in the

matrix justifies our simplifying assumption to neglect the rotation of the elasticity

tensor for the twinned volume of the crystal lattice.
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(a) Compression in the [100] direction
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(b) Tension in the [100] direction
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(c) Compression in the [111] direction
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(d) Tension in the [111] direction

Figure 5.1: The twinning model addition to the CDD crystal plasticity framework demon-

strates the formation of twins in the loading directions known to form twins in FCC mate-

rials: compression loading in [100] and tensile loading in [111]. As observed in experimental

tests, tensile loading in the [100] direction and compression loading in the [111] direction do

not form twins. These results indicate the proper implementation of the twinning model.
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5.2.2 Mesh Convergence Study

In conjunction with the verification of the twinning model, we performed a mesh

convergence study on each of the four loading and orientation sets The parameters

given in Tables 3.1 and 3.2 were used in these mesh convergence studies, and the

same symmetry and tensile loading boundary conditions as used in Section 5.2.

A series of meshes, in which the number of element in each linear direction was

successively increased, were used to run the same crystal plasticity simulation: 8 (23),

64 (43), 216 (63), and 512 (83) total elements in the 1 mm3 cube. The results of this

mesh convergence study are shown in Figure 5.2 for the [100] orientation, and the

results of the mesh convergence study in the [111] orientation are given in Figure 5.3.

Among the four mesh convergence comparisons in Figure 3.2, the stress strain

response appears reasonably converged by 216 (63) elements. Therefore, in the sim-

ulation of the micropillar compression tests, Section 5.3, we have taken the reference

mesh size as 6 linear elements per dimension as the minimum.
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Figure 5.2: The stress response of the CDD crystal plasticity simulations with the twinning

model addition does not demonstrate mesh dependence under compression, Figure 5.2a, nor

in tension, Figure 5.2c. Only under compression does the total twin volume demonstrate

mesh sensitivity on the coarsest mesh, Figure 5.2b. Note that the scales used for Figures

5.2b and 5.2d are not equivalent.
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Figure 5.3: As in the [100] loading direction, the response of the crystal plasticity simu-

lations with the twinning model addition demonstrate little mesh sensitivity under tensile

loading which promotes twinning growth, Figure 5.3c and 5.3d. Under compression the

stress response, Figure 5.3a, and the twin volume, Figure 5.3b, demonstrate mesh sensitiv-

ity, particularly on the coarser two meshes.
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5.3 Micropillar Compression Nickel-Chromium Simulations

With the successful benchmark simulations of our twin slip implementation, we

turn to the simulation of Ni2Cr alloy micropillars, both aged and unaged. To align

with the experimental procedure described in [189] we simulate a set of [111] and

[100] micropillars, with aged and unaged Ni2Cr. We adopt a nominal micropillar

height of 4 µm with a nominal width and depth of 2 µm, as shown in Figure 5.4.

In our simulations we model both the micropillar and the substrate with the CDD

crystal plasticity framework, including the twinning model addition, with a uniform

mesh element size. We mitigate the computation load with a check on the dislocation

velocity value, and only compute the dislocation density evolution and associated slip

increment, shown in green in Figure 2.5 when a dislocation velocity is nonzero in an

element.

Additionally, our use of the cube shape for the substrate component, shown in

Figure 5.4, enables the application of boundary conditions which better mimic the

position of the modeled substrate portion within the larger substrate plane, compared

to the cylinderical shapes adopted by [155, 74]. We have applied zero displacement

boundary conditions normal to all of the substrate surfaces except the surface with the

micropillar. These zero displacement boundary conditions capture the inability of the

modeled substrate component to move. The displacement rate boundary condition
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of -0.01 µm/s was applied to the top of the micropillar, as shown in Figure 5.4.

u̇=-0.01 µm/s

6µm

12µm

2µm

4µm

z
x

y

Figure 5.4: The micropillar compression test geometry used to run simulations of the

micropillar compression tests on the binary Ni2Cr model alloy. The micropillar width and

depth have the same dimension, and the substrate width and depth are the same length.

The bottom of the micropillar substrate is fixed in the x direction, the front and back sides

of the substrate cube are fixed in the y direction as are the right and left sides fixed in the

z direction, and a compressive displacement is applied to the top of the micropillar.

Although we relied on elastic constants for a specific nickel-based alloy, 690, for our

twinning verification problems, we have elected to apply Ni2Cr alloy-specific elastic

constants in the micropillar compression simulations calculated rather than measured



176

from experimental work. To capture the behavior of the micropillar, including the

effect of anisotropy in the elasticity tensor is important; therefore, the isotropic elastic

constants given for Alloy 690 [20] are less suitable. Following the trends set by other

crystal plasticity models of nickel-based alloys [79, 74, 81], we have adopted a set of

aniostropic elasticity constants. Notably these crystal plasticity studies have used an

internal lattice friction hardening value, the Peierls stress, several orders of magnitude

higher than those estimated by molecular dynamics studies for FCC materials [140,

176]. This higher Peierls stress value will directly impact the stress response predicted

by our crystal plasticity simulation by significantly increasing the applied shear stress

required to initiate dislocation movement. In our simulations we employ a set of

anisotropic elastic constants calculated from first principles specifically for Ni2Cr [30].

This study gives separate values of the Peierls stress for edge dislocations and screw

dislocations [30]; since we do not distinguish between edge and screw dislocations in

our crystal plasticity framework, we use the average of these two Peierls stress values.

The list of elastic properties used in our micropillar compression simulations is given

in Table 5.3. The LRO precipitate characteristics for the aged micropillar simulations

are also listed in this table.

Following the assumption of a low initial dislocation density for the micropillars,

similar to that of a well-annealed crystal, we apply a total initial dislocation density

of 1.0×106mm−2 [100] and split this total initial dislocation density evenly among the
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Table 5.3: The elasticity tensor and hardening material parameter values used in the

CDD crystal plasticity for the micropillar Ni2Cr simulations. The characteristics of the

LRO precipitates for the aged micropillar simulations are also listed.

Parameter Value Description

C11 230.7×103 MPa Elastic constant, [30]

C12 78.8×103 MPa Elastic constant, [30]

C44 71.7×103 MPa Elastic constant, [30]

µ 74.5×103 MPa Shear modulus, [30]

b 2.16×10−7 mm Burgers vector, [30], Eq (2.59)

αmbh 0.4 Forest hardening coefficient, Eq (2.71)

Ωαα, Ωαβ 1.0 Self- and latent-hardening coefficient, Eq (2.71)

ωαα,ωαβ 1.0 Mean free glide path, Eq (2.69)

τps 191.5 MPa Estimated Peierls strength, [30], Eq (3.2)

T 298 K Temperature, Eq (3.3)

dLRO 2.5×10−6 mm Average LRO precipitate diameter[61]

fLRO 0.033 Volume fraction of LRO precipitates [61]

γapb 2.0×10−4 Energy of the antiphase boundary, Eq (2.74)

mobile and immobile dislocation densities. The dislocation evolution parameters and

initial conditions are the same as those used in the twinning verification study and
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are given in Table 5.2.

In this work we have completed two sets of micropillar compression simulations:

an unaged binary Ni2Cr alloy set and the same binary alloy after 10,000 hours of

thermal aging at 475oC. We simulate each alloy set in both the [100] orientation and

in the [111] orientation. To capture the impact of the thermal aging, we introduce a

population of uniformly distributed LRO precipitates. The 10,000 hours of thermal

aging were selected to ensure the formation of a stable LRO precipitation population

[183]. Because of the difficulties with measuring the diameter of the coherent LRO

precipitates [181], many of these studies rely on measurements of lattice contraction

to determine if LRO precipitates have formed [172]. Thus only a few studies pro-

vide experimental measurements of LRO precipitate diameter, and the potential for

experimental error is high [181]. For this reason we have relied on the results of a

molecular dynamics study, [61] to provide the average LRO precipitate diameter and

volume fraction for our crystal plasticity simulations as listed in Table 5.3.

5.3.1 Micropillar Compression Simulation Results

Calculating the stress-strain curve from micropillar compression experiments is

not straightforward: the contribution of the substrate to the overall response must

be separated from the response of the micropillar alone. The Sneddon correction is
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often applied to extract the stress-strain response [47, 34]. In our study we avoid the

need for a correction factor by directly comparing the force-displacement experimental

measurement to the simulation results.

In Figure 5.5 we present the results of our CDD simulations with preliminary

experimental micropillar compression data [182]. Because these experimental mi-

cropillar data are preliminary, we do not expect to see exact alignment in the elastic

or plastic regions; instead we use these experimental data to qualitatively access the

results of our crystal plasticity simulations. For the unaged micropillar we compare

the CDD crystal plasticity simulation results against a force-displacement data col-

lected from a [213] orientated micropillar, Figure 5.5a, and for the thermally aged

simulations experimental measurements in the corresponding loading orientations are

available, Figure 5.5b.

We note that bulk single crystal experiments indicate that the stress response for

loading in the [100] and [111] directions should be higher than the stress response

from the [123] loading direction [178, 67, 10]. The higher stress response is a con-

sequence of the multiple slip systems which are active in the [100] and [111] loading

directions compared to the only two active slip systems in the [123] type loading ori-

entation. Since the stress response is calculated from the force response, we expect

the same trends to hold as we compare the force-displacement curves. With this

trend in mind, we recognize that similar plastic regime force response between the
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[100] simulation result and the [213] experimental data indicates an underprediction of

the micropillar response by our crystal plasticity framework. Similarly, although the

simulation results for the [111] oriented micropillar exceed the experimental data, pre-

vious experimental measurements in different loading orientations have determined

that the stress response for loading in the [111] direction significantly exceeds the

[123] response for FCC materials [178, 67]. The underprediction of the micropillar

force response by our crystal plasticity simulations is apparent in the thermally aged

comparison, Figure 5.5b.

Furthermore we note that the simulations predict a minimal difference in the plas-

tic regime force response of the thermally aged simulations compared to the unaged

simulations for each loading orientation. In contrast to these predictions, experi-

mental hardness measurements of the unaged and thermally aged binary alloy have

recorded a noticeable increase in hardening with the increased presence of LRO pre-

cipitate [183]. In fact, hardness tests are one of the most common experimental

methods used to determine the presence of LRO precipitates in nickel-based alloys

[200, 201, 122]. This slight predicted increase in hardening for the thermally aged

materials demonstrates that our crystal plasticity simulation has not fully captured

the interaction of the LRO precipitates with the dislocations.
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(a) The force response of the unaged [100]
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force measured from a [213] orientated mi-

cropillar compression experiment [182] pro-

vided for reference
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sured from the experimentally compressed
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Figure 5.5: The significant differences in the force measured during the experimental

micropillar compression tests and the force predicted by the crystal plasticity simulations

indicates that not all of the relevant physics active in the micropillar are captured by our

bulk material crystal plasticity model. We suggest further developments to the model or

experimental testing of larger diameter micropillars to bring the measured and simulation

results into alignment.

The underprediction of the force response by the simulations clearly indicates that

our crystal plasticity framework does not capture all of the physics relevant to this

problem. Experimental studies of pure nickel micropillars found that a minimum
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micropillar diameter of 20 µm was required to replicate bulk material properties

[38]. The CDD crystal plasticity models we have employed in these simulation are

suitable for bulk materials. Since the micropillar geometry we are attempting to

replicate here is an order of magnitude smaller than this threshold, it is reasonable

that size effects, which we have discussed previously, may play a role in the simulation

underpredictions.

Beyond the difference likely due to size effects, the simulations of the thermally

aged micropillar also underpredict the hardening observed in the micropillar exper-

iment force response, Figure 5.5b. Furthermore we note that the thermally aged

micropillar force response demonstrates a larger hardening slope than does the un-

aged micropillar force measurement. Allowing for the different loading orientations,

this difference in hardening behavior raises the possibility that the thermally aged

LRO precipitates contribute to the work hardening. To capture this work hardening

contribution of the LRO precipitates, the interactions between theses precipitates and

dislocations should be investigated further. Among the potential interaction mech-

anisms to consider are bowing of dislocations around precipitates or the pinning of

dislocation segments by a pair of precipitates to create a new glide dislocation source,

such as the Frank-Read source, Section 2.2.3. Additionally our proposed twinning

resistance model, Eq (5.4), does not include a contribution from the LRO precipitates.

The apparent softening in the force response of the thermally aged micropillar
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simulations is the result of improper boundary conditions, which have allowed the

top micropillar surface to slide out. To address this additional movement of the

top surface, we will explore the use of frictional and zero displacement boundary

conditions for the displacements tangential to the top micropillar surface. We expect

that these boundary conditions will prevent the softening we observe in the current

simulation results.

Despite this mismatch between the simulation and the experimental data loading

orientations, we have retained the [100] and [111] loading orientations to examine

the twinning behavior in the two sets of micropillar compression simulations. The

twinning behavior, as calculated with the CDD crystal plasticity and twinning model

we have presented in this chapter, aligns with our expectations for twinning behavior

in the [100] orientation only under the compressive loading, as shown in Figure 5.6.

The twinning volume fraction in this set of figures represents the twins in the pillar

itself; although a small fraction of twins occur within the substrate, the volume

fraction is sufficiently small to not be of interest to our comparison here.

In both the unaged and the 10,000 hours aged micropillar compression simula-

tions, our results demonstrate, at the beginning of the deformation, the twinning

evolution aligns with the trends we expected from our verification benchmarks, Sec-

tion 5.2. During the early stages of deformation, the [100] orientations demonstrate

clear twinning growth while twinning is essentially inactive in the [111] orientation
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micropillar. Once we reach a midpoint of the applied compressive displacement, the

twins begin to grow in the thermally aged [111] loading orientation as well. Currently

it is not clear if the activation of twins in the [111] orientation indicates an interaction

of the thermally aged LRO precipitates with the twin dislocations through the glide

dislocations or if the evolution of twins in this direction is an artifact introduced by

the improper loading boundary condition. This issue warrants further investigation.
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Figure 5.6: In the unaged micropillar simulations the twinning behavior aligns with expec-

tations for twins in only the [100] orientation; however, the thermally aged LRO precipitates

appear to promote some twinning in both orientations of the micropillar simulations.

To understand and address the discrepancies between the experimental micropillar

data and our simulation results, we begin by examining the evolution of the simulated

microstructure. Careful inspection of the simulation glide dislocation evolution, twin
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growth, and system slip resistance will aid us in determining which physics are not

fully captured by our crystal plasticity framework. We inspect two glide dislocation

systems: one that is active in the micropillar, Figure 5.7a, and one that is mostly

inactive in the pillar while being active in the region of the substrate near the pillar,

Figure 5.7b.

(a) Mobile dislocation density on the

[011](11̄1) slip system demonstrates growth

only in the micropillar.

(b) Mobile dislocation density on the

[1̄01](111) slip system in the base of the mi-

cropillar and in the substrate.

Figure 5.7: The evolution of mobile dislocations within the substrate at the base of the

pillar demonstrate the importance of including the model of the substrate in our micropillar

crystal plasticity simulations. Note the that scales used in Figures 5.7a and 5.7b are not

equivalent.

The distribution of the mobile dislocations on the [1̄01](111) slip system shows
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the importance of including the crystal plasticity model in the substrate. While

the [1̄01](111) slip system is not active in the micropillar itself, the evolution of the

dislocations on this system at the base of the micropillar will harden the overall

response of the micropillar to the applied displacement.

5.4 Conclusions and Future Recommendations

In this chapter we have presented the implementation of a simplified twinning

evolution model, suitable for use in our binary model Ni2Cr alloy. Although simple,

this twinning model includes coupling among the glide dislocation evolution models

and the twin growth model. This twinning model addition to the CDD crystal plas-

ticity framework has been verified with a series of benchmark problems developed

from conventional knowledge of twin formation under specific loading conditions in

FCC materials. Additionally we have incorporated a hardening model specific for

LRO precipitates, which form in thermally aged Ni2Cr and nickel-based alloys.

We have applied these twinning and LRO precipitate hardening models to the

study of micropillar compression tests. The preliminary results of these simulations

highlight the importance of modeling both the substrate and the micropillar com-

ponents of the geometry with a crystal plasticity model. Nonetheless these results

demonstrate that the crystal plasticity models we have presented here underpredict
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the micropillar response. We attribute this underprediction to a combination of an ill-

posed loading boundary condition and an incomplete capture of the relevant physics

for the 2 µm diameter pillar. We propose as future work two additional models to

address the underprediction.

Given the small size of these micropillar simulations, size dependent effects al-

most certainly play a role in explaining the high values of the force measured in

the experiments and the calculated stress response. The addition of a geometrically

necessary dislocation term, such as the one introduced in Chapter 4, may enable

our simulation to better replicate the experimental measurements collected from the

micropillar compression deformation. Furthermore the increase in work hardening

observed in the thermally aged micropillar experiments motivates the future investi-

gation of interaction mechanisms among the LRO precipitates and the glide and twin

dislocations.
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CHAPTER 6. DISLOCATION GLIDE VELOCITY

MODEL COMPARISON

A nuclear power plant reactor pressure vessel, one of the reactor components that

is a focus of this thesis work, is subject to significant changes in temperature during

refueling cycles. The temperatures range from around 300oC during normal operation

to a room temperature around 30oC during the refueling shutdown [40]. Transient

events could also raise the reactor temperature over a short period of time. Under-

standing how these changes in temperature affect the engineering scale properties of

reactor pressure vessel steel is a key question which crystal plasticity models should

help to address.

The increased development and use of physically based models in the crystal plas-

ticity field has extended the ability to capture physical microstructure interactions

with the additional expanded constitutive models. The trade off between more ex-

panded physically based models and more condensed phenomenological models is the

capture of physical events and interactions within the microstructure against the sig-

nificantly larger number of material specific parameters which must be fit. Given the

large numbers of material specific parameters in the physically based models, it is not

trivial and is time consuming to individually determine fits for each of the material

specific parameters [161]. Often engineering judgment must be applied to fit groups
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of parameters together to match limited experimental data.

Given the important role of dislocations in the inelastic deformation of metals

as carriers of plasticity, as discussed in Section 2.2.3. Many physically based crystal

plasticity models track the evolution of dislocation densities [10, 108, 55, 144], in-

cluding our continuum dislocation dynamics (CDD) framework [177]. These models

connect movement of the dislocations to the plastic shear through the Orowan equa-

tion, Eq (2.59). The force of the applied shear stress on these mobile dislocations

is incorporated through the velocity term of the Orowan relation. The driving force

component in the velocity equation is a function of the applied shear stress and the

slip resistance of each individual slip system. This driving force is derived from the

kinetic flow rule laws from other phenomenological crystal plasticity models [159, 85].

Within the field of crystal plasticity two main forms of a dislocation glide veloc-

ity have emerged: a power law form velocity model and an enthalpy-based velocity

model [161, 99]. The power law glide velocity model is constant across all tempera-

ture ranges while the enthalpy-based dislocation velocity model depends directly on

temperature. As improvements to available computing power have mitigated the dis-

parity in the computational requirements of these two models, the main difference in

the application of these two models is in the number of material specific parameters

used in each model.

To address the gap in the connection between engineering scale mechanical be-
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havior and changing temperature environments, our crystal plasticity model must

include an appropriate dependence on temperature. In our work here we define the

appropriate dependence on temperature to be a responsiveness of the calculated plas-

ticity slip to temperature changes without the undue introduction of uncertainty from

additional material specific parameters.

In this chapter we compare the use of the power law velocity equation, first in-

troduced with the CDD crystal plasticity model, Section 2.3.1, to the enthalpy-based

velocity model used by other groups studying BCC iron with crystal plasticity models

[144, 28]. We evaluate both dislocation glide velocity model for the ability to capture

the effect of temperature on the results and for instabilities introduced by varying

the velocity equation exponential parameters.

6.1 Formulation of Dislocation Glide Velocity Equations

We begin our comparison of the two dislocation glide velocity models with a

review of the two equations. In the overviews of these two models we will discuss the

potential advantages of each model and the material specific parameters associated

with each model.

In all of the simulations with these two glide velocity models we have introduced

the capability to model the anisotropic character of the slip system strength. We have
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previously shown anisotropic character of the slip system strength to be necessary

to correctly capture closs slip in BCC α iron, Section 3.2.4, which is our intended

material for our single crystal comparison studies in Section 6.2. As we will discuss

in Section 6.1.1 and Section 6.1.2, the anisotropy is introduced into the slip system

strengths by modifying the initial lattice friction quantity.

We start our overview with the power law glide velocity equation, which we have

used in our models up to this point, before proceeding to review the enthalpy-based

glide velocity equation.

6.1.1 Power Law Glide Velocity Equation

The power law dislocation glide mode implemented in the CDD model, Section

2.3.1, follows directly from the flow rule introduced by Rice [159, 146] through the

Orowan relation

γ̇α = γ̇o

∣∣∣∣ταgα
∣∣∣∣1/m sign(τα) ⇒ vαglide = vo

∣∣∣∣ταgα
∣∣∣∣1/m sign(τα) , if τα ≥ gαo (6.1)

where vo is the initial velocity. It follows through the Orowan relation that vo is a

function of the reference strain rate, γ̇o

γ̇o = ρmobileo bvo ⇒ vo =
γ̇o

ρmobileo b
(6.2)

where ρo is the initial value of mobile dislocation density in the material at the start

of the crystal plasticity simulation and b is the Burgers vector.



192

This power law velocity model therefore has two material specific parameters:

the exponent value m and the reference shear rate γ̇o. The value of the exponential

constant is often held to a value around 0.010 [76] while the value of the reference

strain rate varies from 0.001 to 0.1 [76, 101, 177]. Most crystal plasticity frameworks

using the power law glide velocity equation have applied values of m = 0.012 and

γ̇o = 0.001 [103].

The power law model offers a more robust approach to calculating the dislocation

velocity and is less susceptible to numerical instabilities by virtue of its simplicity.

On the other hand this velocity model is not a function of temperature, which is

known to impact dislocation velocity, Section 2.2.3. A dependence on temperature

could be introduced by varying one or both parameters; however, this approach would

require experimental data sets for calibration at each temperature of interest. This

approach is not desirable nor is it always feasible.

6.1.2 Enthalpy-based Glide Velocity Equation

The second dislocation glide velocity model which we will consider we have termed

the enthalpy-based velocity model. Because dislocation glide is thermally activated

[69], enthalpy-based glide models account for temperature within an activation energy

term. The glide model we have chosen for this study was developed by Kothari and
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Anand, following Kocks’ suggestions for the inclusion of an enthalpy type term to

account for thermal bypass of small local obstacles in the dislocation path [88, 85].

The enthalpy-based model distinguishes between resistances from smaller local

obstacles which can be bypassed with thermal fluctuations, thermal resistances, and

the resistances caused by larger obstacles which require applied shear stress for dis-

locations to continue gliding, athermal resistances [88]. This decomposition of slip

resistances is another difference from the power law glide velocity model, Eq (6.1),

which contains all the slip resistance contributions within a single strength term. The

mathematical formulation of the enthalpy-based dislocation glide velocity model is

vαglide = lgν · exp
(
−∆F

kT

(
1−

(
|τα| − gαa

gαt

)p)q)
if τα ≥ gαa (6.3)

where lg is a constant mean free glide length, ν is the jump frequency of the disloca-

tions, ∆F is the stress free activation energy, k is the Boltzmann constant, T is the

temperature in Kelvin, τα is the applied shear stress, gαa and gαt are the aforemen-

tioned athermal and thermal resistances, and p and q are exponential function shape

parameters, respectively [144, 28].

This enthaply based velocity mode has six different material specific parameters,

excluding the athermal slip resistance term. The pre-exponential terms lg and ν are

related through a similar application of Orowan’s relation as we used in the case of
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the power law velocity model, Eq (6.2). Here the Orowan’s relation has the form

γ̇o = ρob (lgν) (6.4)

such that the mean free glide length, lg, and the jump frequency, ν, are similar to

the initial velocity value in the power law model. A constant value for lg is generally

assumed so that the jump frequency can be estimated from Eq (6.4). The value of

the γ̇o term is the same as used in the power law velocity model [144]. The activation

energy has the form

∆F = fµb3 (6.5)

where f is a coeffiecent generally between 0.05 and 2.0 [88], µ is the material shear

modulus, and b is the Burgers vector.

The separation of the slip system resistances into the thermal and athermal com-

ponents requires an adjustment to the summed slip system strengths in Eq (2.70).

Following Chakraborty and Biner we have attributed hardening due to dislocation

forests, Eq (2.71), and irradiation defects, Eq (2.72), to the athermal resistance, gαa

term.

Because of the importance of the anisotropy in the calculation of the cross slip,

Section 3.2.4, we have implemented an anistropic factor for the Peierls stress into

the calculation of the thermal resistance, gαt . The athermal resistance is described as

being akin to the Peierls stress, or lattice friction, of the crystal lattice [144] and thus

is the most appropriate term in which to include the anisotropy effect.
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The final two material specific terms in the enthalpy-based velocity equation are

the shape function parameters; these terms impact the velocity equation by deter-

mining the shape of the activation enthalpy and applied shear stress to slip resistance

ratio curves [88]. The following bounds on these exponential constants are often

suggested in literature to be

0 ≤ p ≤ 1 (6.6)

1 ≤ q ≤ 2 (6.7)

although most applications of these terms tend toward the lower end of both ranges

[88, 10].

The temperature dependence of the activation free energy enthalpy term offers

a direct method to incorporate the effects of temperature on the crystal plasticity

model. With careful fitting of the many material specific parameters, the enthalpy

velocity equation can be applied to a wide range of temperatures. For these reason this

enthalpy-based velocity model, Eq 6.3, or a similar velocity model, is often preferred

for use in current crystal plasticity frameworks [161].

We do, however, express a measure of concern about the large number of pa-

rameters which must be fit in the enthalpy-based velocity model. In addition to the

challenge of fitting all of the parameters, there also exists a potential to introduce

numerical instabilities into the model with different material parameter selections.
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6.2 Single Crystal α Iron Simulations

To explore these potential issues with temperature range and material parameter

stability we have conducted a set of single crystal simulations for an α iron BCC

material. In the first set of simulations we have maintained the velocity equation

constants from previous work while varying the temperatures. In the second set of

simulations we have held the temperature constant while varying the exponential

parameters in each model. We have chosen to focus on the exponential parameters

because of the similarity in the pre-exponential factors of each model, recall Eq (6.2)

and Eq (6.4), and because of the larger probability for the exponential terms to

introduce numerical instability.

In all of these simulations we have retained the CDD dislocation evolution models,

Eq (2.67), Eq (2.68), and Table 2.4 for glide dislocations only and have excluded

the models for geometrically necessary dislocations and twin dislocations. We have

changed only the dislocation glide velocity equation. We have also retained all of the

elastic constants and material parameters for BCC α iron, listed in Table 6.1.

As in the set of α iron single crystal simulations we performed to fit the dislocation

evolution parameters, we have conducted these simulations on a 1mm3 cube with a

216 (63) Hex8 element mesh with symmetry boundary conditions.
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Table 6.1: Constant material parameter values used in the single crystal α-Fe simulations

for the comparison of dislocation glide velocity models.

Parameter Value Description

C11 242×103 MPa Elastic constant, [65]

C12 150×103 MPa Elastic constant, [65]

C44 112×103 MPa Elastic constant, [65]

µ 80×103 MPa Shear modulus, [65]

b 2.48×10−7 mm Burgers vector,[65], Eq (2.59)

αmbh 0.4 Dispersed barrier coefficient, Eq (2.71)

Ωαα 1.0 Self-hardening coefficient, Eq (2.71)

Ωαβ 0.2 Latent-hardening coefficient, Eq (2.71)

ωαα,ωαβ 1.0 Mean free glide path, Eq (2.69)

Rc 15b mm Annihilation radius of capture, Table 2.4

τ ∗ 4×10−3 · µ Critical cross slip stress, Eq (3.3)

Va 20b3 Volume for dislocation cross slip, Eq (3.3)

k 1.38065×10−20 MPa-mm3

K
Bolztmann constant, Eq (3.3)

τps 15 MPa Isotropic Peierls strength, Eq (3.2)

We have loaded the single crystal cube in tension along the [100] direction with a

displacement rate of 3.3×10−4 mm/s. Correspondingly we have used the disloca-
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tion evolution parameters for the [100] direction. These parameters and the initial

dislocation density values are listed in Table 6.2.

Table 6.2: Values of the dislocation evolution parameters used in the simulations compar-

ing dislocation glide velocity equations. These parameters were fit to single crystal α-Iron

experimental data in Section 3.2.1 for the CDD dislocation evolution model, Eq (2.67) and

Eq (2.68) and are appropriate for loading in the [100] direction.

Dislocation Evolution Interaction Constant Value

Frank-Read generation α1 0.03

Mobile-mobile annihilation α2 0.5

Dislocation locking α3 0.002

Locked dislocations freed α4 0.002

Cross slip α5 0.015

Immobile-mobile annihilation α6 1.0

Initial total mobile dislocation density ρmobileo 2.5×105 1/mm2, [99]

Initial total immobile dislocation density ρimmobileo 2.5×105 1/mm2, [99]
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6.2.1 Variation of Temperature Comparisons

In this section we explore the response of the two dislocation glide velocity models,

Eq (6.1) and Eq (6.3), to changes in temperature. We expect the predicted stress-

strain response to change with increasing temperature. While the enthalpy-based

velocity equation depends directly on temperature, the only sensitivity to temperature

in the crystal plasticity simulations using the power law velocity model comes through

the cross slip term, Eq (3.3). Although the terms of the elasticity tensor are also

affected by changes in the temperature, for the purposes of this study we have held

those parameters constant at the values given in Table 6.1. In the results of this

temperature study, Section 6.2.1, we compare the responses of the crystal plasticity

simulations to determine if the response to changing temperature is adequate with

both velocity models or only with the enthalpy-based glide velocity model.

Temperature Variations Used in the Simulation Set

In this temperature variation study and in the exponential constants variation

study, Section 6.2.2, we have used the set of dislocation glide velocity equation pa-

rameters from previous works: we apply the same parameters for the power law

velocity as we used in Chapter 3 and we use the parameters determined by Patra and

McDowell for the enthalpy-based velocity model [145]. These constants are given in

Table 6.3 and Table 6.4.
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Table 6.3: Parameter values for the power law dislocation glide velocity model, Eq (6.1)

in the temperature variation comparison of dislocation glide velocity model, taken from our

work in Section 3.2.1. The initial dislocation glide velocity is calculated through Eq (6.2)

from a reference shear rate of 4.0×10−2 [101], as given in Table 3.1.

Dislocation Glide Velocity Term Constant Value

Initial dislocation glide velocity vo 0.645 mm/s

Exponential constant m 0.012[101]

Table 6.4: Parameter values for the enthalpy-based dislocation glide velocity model, Eq

(6.1) in the temperature variation comparison of dislocation glide velocity model, from [28].

Dislocation Glide Velocity Term Constant Value

Constant mean free glide length lg 1.5×10−6 mm

Jump frequency ν 5.396×109

Stress free activation energy ∆F 0.35µb3 MPa
mm3

Boltzmann constant k 1.38065×10−20 MPa-mm3

K

Inner exponential shape parameter p 0.28 [145]

Outer exponential shape parameter q 1.34 [145]
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We have selected a set of different temperatures which span the expected operating

temperatures for a reactor pressure vessel across a refueling cycle: 25oC to 300oC [40].

The full set of temperatures used in this study is given in Table 6.5.

Table 6.5: Set of temperature values, spanning the typical range of temperatures experi-

enced by the reactor pressure vessel for normal operating conditions to shutdown [40], used

in the temperature study portion of the dislocation glide velocity model comparison.

Simulation Run Temperature

T1 25oC

T2 75oC

T3 150oC

T4 225oC

T5 300oC

Results of Temperature Variations

Intuitively we expect increases in the temperature to produces a softer stress

response: that is, for a given strain the stress from a sample at a higher temperature

will be smaller than the stress in a sample tested a a lower temperature. Experimental

data, from tensile tests conducted on single crystals of copper and aluminum at a wide

range of temperatures, also assert that a metal material should resist deformation less

at higher temperatures [178, 67]. Both of these works show significant reductions in



202

the measured stress over a prescribed strain with increasing sample temperature. On

the mesoscale, individual dislocations can travel further at higher temperatures under

an applied stress, thus the crystal is able to undergo more plastic deformation.

To capture the influence temperature has on the stress response predicted by

crystal plasticity simulations, we rely in this study on the dislocation glide velocity

model and, to a lesser extent, the cross slip term in the dislocation evolution term,

as discussed in Section 6.1. Over the range of temperatures specified in Table 6.5,

we evaluated the two dislocation glide velocity models, Eq (6.1) and Eq (6.3), on

their ability to capture the trend of decreasing stress with increasing temperature.

We present the results from the power law glide velocity model in Figure 6.1 and the

results from the enthalpy-based dislocation glide velocity model in Figure 6.2.

We observe only a minimal variation of the stress response to changes in tem-

perature from the power law dislocation glide velocity model, Figure 6.1a. Since the

variation in the stress response with different simulation temperatures occurs in the

later stages of deformation, we attribute the temperature sensitivity to the cross slip

term in the dislocation evolution model, Eq 3.4. The increased temperature increases

the cross slip activity and thus softens the effective stress response of the single crys-

tal simulation. Addition evidence of the increased cross slip activity is observed in

the evolution of the mobile dislocations on active slip systems, Figure 6.1b. With

increasing simulation temperature the mobile dislocation density decreases as more
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(b) Mobile dislocation evolution on

(211̄)[11̄1], an active slip system.

Figure 6.1: The power law glide velocity model does not demonstrate large changes in the

stress response or in the mobile dislocation evolution to changes in temperature; however,

the observed changes are consistent with expectations for increasing temperature. The

power law glide velocity model consistently demonstrates lower stresses and lower mobile

dislocation densities with increasing temperature values as expected.

mobile dislocation cross slip away from the softer {112} slip systems to the harder

{110} systems. We have selected the (211̄)[11̄1] slip system as a representative of the

several active slip systems with the [100] loadig direction.

Both of these trends in Figure 6.1 are in line with the trends observed among

the experimental data; however, the power law velocity simulation stress response is

notably less sensitive to temperature variations than the experimental measurements.

While the power law glide velocity model is not directly responsible for these simu-
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lation trends, crucially it does not interfere with the temperature sensitive response

of other models within the CDD crystal plasticity framework. We further suggest a

potential modification to the power law dislocation glide velocity model in Section

6.2.3 to introduce a direct dependence on temperature rather than relying solely on

the cross slip term to provide temperature dependence.

The response of the enthalpy-based dislocation glide velocity model over the set

of temperatures listed in Table 6.5 is shown in Figure 6.2. The variation of the stress

response over the first three temperatures in Table 6.5 aligns with our expectations:

each increase in temperature produces a significant drop in the stress response. For

the highest two temperatures, howevever, we observe a troubling trend: the stress

response at these higher temperatures demonstrates a nonphysical hardening of the

effective stress response. Both enthalpy-based velocity model simulations at 225oC

and 300oC predict higher effective stresses at 0.1 effective strain than the simulation

at 150oC. As seen in Figure 6.2a, the 225oC simulation stress curve crosses the 150oC

curve at approximately 0.9 mm/mm strain, and the 300oC simulation stress response

crosses the stress curve from the 150oC simulation at 0.8 mm/mm strain.

This same interference from the enthalpy-based velocity model is also evident in

the mobile dislocation evolution on active slip systems, Figure 6.2b. The mobile

dislocation evolution at the lower temperatures follows the expected trends with suc-

cessive lowering of the densities. At the higher simulation temperatures the mobile
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dislocation density evolution also demonstrates similar nonphysical hardening trends

as seen in the stress response.
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(b) Mobile dislocation evolution on

(211̄)[11̄1], an active slip system.

Figure 6.2: The enthalpy-based glide velocity model demonstrates a noticeable change

in the stress response and in the mobile dislocation evolution with increasing temperature.

The trend of these changes is not consistent across the range or temperatures nor consistent

with expectations based on experimental observations: at the two higher temperatures,

225oC and 300oC, the enthalpy-based velocity model predicts a non-physical increase in the

strength of the material compared to the simulation at 150oC, accompanied by a similar

increase in mobile dislocation accumulation.

These inconsistent responses of the enthalpy-based velocity model crystal plastic-

ity simulations are indicative of the limited suitability of this model for predictive

simulations conducted over a range of temperatures. While the temperature sensitive
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response at lower temperatures is better able to capture the experimentally observed

softening, the nonphysical hardening at the higher temperatures in our study range

increases the probability of unreliable predictions when using this velocity model.

While both dislocation glide velocity models will require recalibration to properly

capture the impact of temperature, simulations which employ the enthalpy-based ve-

locity model will require additional testing to determine when the nonphysical trends

observed in Figure 6.2 begin.

Given the necessary process of recalibrating both dislocation glide velocity models

to capture the effects of increasing temperature, we explore the impact of varying the

exponential constants in both velocity models in the next section.

6.2.2 Variation of Exponential Velocity Equation Constants

In this section we investigate the sensitivity of the two dislocation glide velocity

models, Eq (6.1) and Eq (6.3), to changes in the exponential parameters in each

equation. We have explored the range of allowable exponential values at a constant

temperature and evaluated the results for stability. A wide set of parameter variations

which produce stable results provides confidence in the future ability to calibrate a

dislocation glide velocity model to a new crystalline metal. We have elected to vary

only the exponential terms in this study for two reasons:



207

• The pre-exponential coefficient terms in the power law velocity equation and

in the enthalpy-based velocity equation are both related to the same reference

shear rate through the Orowan relation, Eq (6.2) and Eq (6.4). Thus these two

pre-exponential terms are in essence equivalent.

• The exponential terms, which in both cases act on the applied shear stress to

the slip resistance ratio terms, have the highest potential to introduce numerical

instability into the velocity equations.

Varying the exponential constants, m in the power law velocity model, Eq (6.1), and

the combination of p and q in the enthalpy-based velocity model, Eq (6.3), enables

us to perform a set of comparable variations of both models.

Parameter Variations Used in the Simulation Set

Both glide velocity modes are generally presented in literature with only a small

variation in the exponential parameters: m, from the power law velocity model, varies

from 0.010 - 0.012 [76, 103] while p and q from the enthalpy-based model are often

assigned values between 0.1 - 0.3 and 1.1 - 1.3, respectively [88, 10, 144, 28].

We have selected a variation of the enthalpy-based velocity model exponential

constants of 0.1 increments in the lower half of the allowable ranges, Eq (6.6) at two

constant temperatures: 25oC and 150oC. We have applied a similar set of variations

to the exponential coefficients from the power law velocity model. Since the power
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Table 6.6: Variations of the exponential constant in the power law dislocation glide velocity

model, Eq (6.1) used in the coefficient perturbation study

Simulation Run Exponential Constant (m) Temperature

P1 0.010 25oC

P2 0.015 25oC

P3 0.020 25oC

P4 0.025 25oC

P5 0.030 25oC

P6 0.035 25oC

P7 0.040 25oC

P8 0.045 25oC

P9 0.050 25oC

law model does not directly depend on temperature we have run these simulations

at a temperature of only 25oC. The variation of the exponential constants for the

power law velocity equation are given in Table 6.6 and the variations of the enthalpy-

based velocity equation are given in Table 6.7 and Table 6.8. We retain the values

for the remainder of the parameters in the velocity equations from the temperature

study as given in Table 6.3 for the power law velocity model, and Table 6.4 for the

enthalpy-based velocity model.
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Table 6.7: Variation of exponential constants in the enthalpy-based dislocation glide ve-

locity model, Eq (6.3), at a constant temperature of 25oC, used in the coefficient study

Simulation Run Exponential Constants Temperature

(p) (q)

C1 0.1 1.1 25oC

C2 0.1 1.2 25oC

C3 0.1 1.3 25oC

C4 0.1 1.4 25oC

C5 0.1 1.5 25oC

C6 0.2 1.1 25oC

C7 0.2 1.2 25oC

C8 0.2 1.3 25oC

C9 0.2 1.4 25oC

C10 0.2 1.5 25oC

C11 0.3 1.1 25oC

C12 0.3 1.2 25oC

C13 0.3 1.3 25oC

C14 0.3 1.4 25oC

C15 0.3 1.5 25oC
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Table 6.7: Variation of exponential constants in the enthalpy-based dislocation glide ve-

locity model, Eq (6.3), at a constant temperature of 25oC, used in the coefficient variation

study (continued)

Simulation Run Exponential Constants Temperature

(p) (q)

C16 0.4 1.1 25oC

C17 0.4 1.2 25oC

C18 0.4 1.3 25oC

C19 0.4 1.4 25oC

C20 0.4 1.5 25oC

C21 0.5 1.1 25oC

C22 0.5 1.2 25oC

C23 0.5 1.3 25oC

C24 0.5 1.4 25oC

C25 0.5 1.5 25oC

These variations on the exponential constants of the two dislocation glide velocity

models allow us to better anticipate difficulties which may arise in the recalibration

of the glide velocity models for higher temperatures which we discuss in Section 6.2.1.
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Significant sensitivity of a model to changes in the exponential parameters indicates

that additional care will be required before using that model in a higher temperature

simulation.

Table 6.8: Variation of exponential constants in the enthalpy-based dislocation glide ve-

locity model, Eq (6.3), at a constant temperature of 150oC, used in the coefficient study

Simulation Run Exponential Constants Temperature

(p) (q)

C26 0.1 1.1 150oC

C27 0.1 1.2 150oC

C28 0.1 1.3 150oC

C29 0.1 1.4 150oC

C30 0.1 1.5 150oC

C31 0.2 1.1 150oC

C32 0.2 1.2 150oC

C33 0.2 1.3 150oC

C34 0.2 1.4 150oC

C35 0.2 1.5 150oC

C36 0.3 1.1 150oC

C37 0.3 1.2 150oC
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Table 6.8: Variation of exponential constants in the enthalpy-based dislocation glide ve-

locity model, Eq (6.3), at a constant temperature of 150oC, used in the coefficient variation

study (continued)

Simulation Run Exponential Constants Temperature

(p) (q)

C38 0.3 1.3 150oC

C39 0.3 1.4 150oC

C40 0.3 1.5 150oC

C41 0.4 1.1 150oC

C42 0.4 1.2 150oC

C43 0.4 1.3 150oC

C44 0.4 1.4 150oC

C45 0.4 1.5 150oC

C46 0.5 1.1 150oC

C47 0.5 1.2 150oC

C48 0.5 1.3 150oC

C49 0.5 1.4 150oC

C50 0.5 1.5 150oC
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Results of Exponential Constants Variations

In this section we present the results of varying the exponential constants in both

the power law velocity model and in the enthalpy-based velocity model. Given the

large number of parameter variations considered in the case of the enthalpy-based

model we have sorted the results for this velocity model into five separate figures

by the outer exponential shape function parameter, p, in Figures 6.4, 6.5, 6.6, and

6.7. The relative simplicity of the power law velocity model allows us to coalesce the

results into a single graph, Figure 6.3. As in the temperature study results, Section

6.2.1, we present the effective stress response and the mobile dislocation evolution on

the active (211̄)[11̄1] slip system from these crystal plasticity simulations.

The power law velocity model demonstrates an acceptable and stable response to

changes in the exponential parameter m. We observe equivalent drops in the stress

response with increasing values of the exponent, Figure 6.3a. The impact of the

exponential variation on the evolution of mobile dislocations is limitied, Figure 6.3b,

with the various mobile dislocation density curves being difficult to distinguish from

one another. We note that for higher values of the exponential constant m, the stress

curve demonstrates a dip at the onset of plasticity: this behavior is noticeable for

exponential constant values above 0.030.

The stability in the responses of all the exponential constant values listed in

Table 6.6 gives us confidence that the power law glide velocity model could be easily
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recalibrated for higher temperatures. Furthermore these results indicate that the

simulation results from the recalibrated power law velocity model will be reliable.
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(b) Evolution of the mobile dislocation den-

sity on (211̄)[11̄1], one of the active slip sys-

tems, at 25oC

Figure 6.3: Variation of the stress response and mobile dislocation evolution, on an active

slip system, to changes in the value of the power law velocity exponential constant, m, as

given in Table 6.6, demonstrate a consistent reduction in both quantities with increasing

values of the exponential constant.

The sheer number of simulations required to test the enthalpy-based velocity

model is an indication of the variability inherent in this model. While variability

can enable a model to capture a greater number of physical events it can also in-

troduce more uncertainty into the results. In this study we evaluate this inherent

variability for the potential of unstable or nonphysical results.
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Figure 6.4: Changes in the stress response of α iron single crystals, loaded in [100] at

25oC, with the set of exponential parameter variations given in Table 6.7.
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Figure 6.5: Evolution of the mobile dislocations on the active slip system (211̄)[11̄1] in

single crystal α iron, at 25oC, with the exponential parameter sets listed in Table 6.7.
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We have separated the results of the simulations conducted at 25oC, Table 6.7,

into Figure 6.4 and Figure 6.5 and the simulation results from 150oC, Table 6.8, into

Figure 6.6 and Figure 6.7. In the enthalpy velocity model results we observe the same

cross over behavior we observed in the temperature range study, Section 6.2.1. In

this exponential constant variation study the cross over behavior is present at low

p values and high q values. At the lower temperature this crossing of stress strain

curves is demonstrated only for low values of p at 0.1 and 0.2 combined with high

values of q at 1.4 and 1.5, Figures 6.4a and 6.4b. In the simulations set conducted at

150oC this cross over hardening behavior extends into the middle of the tested range

of p and q values, Figures 6.6a, 6.6b, and 6.6c.

As in the power law velocity study, the mobile dislocation density on the represen-

tative active slip system is less sensitive to the variation in the exponential constants,

Figure 6.5 and Figure 6.7. Nonetheless the cross over trend we observed in the stress

response is also present in the mobile dislocation evolution for low values of p and

high values of q. The trend is noticeable in the mobile dislocation evolution at 25oC,

Figures 6.5a and 6.5b and is accentuated in the equivalent simulations run at 150oC,

Figures 6.7a and 6.7b. These results demonstrate that the enthalpy-based velocity

model may inhibit the dislocation evolution equations, depending on the velocity

model exponential constant parameter values.
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Figure 6.6: Changes in the stress response of α iron single crystals, loaded in [100] at

150oC, with the set of exponential parameter variations given in Table 6.8.
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Figure 6.7: Evolution of the mobile dislocations on the active slip system (211̄)[11̄1] in

single crystal α iron, at 150oC, with the exponential parameter sets listed in Table 6.8.
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The presence of the cross over trend in the variation of the enthalpy-based model

exponential parameter study indicates the potential for inconsistent results with this

glide velocity model. Poorly calibrated applications of this model may produce incon-

sistent and nonphysical results. The interaction of the two exponential shape function

parameters introduces additional uncertainity into application beyond those we have

discussed in the temperature variation study, Section 6.2.1. The power law velocity

model, which does not demonstrate the potential to generate nonphysical simula-

tion results, is therefore a more reliable dislocation glide velocity mode for crystal

plasticity simulations spanning a range of temperatures.

6.2.3 Temperature Dependent Modification to the Power Law Model

The reliability of the power law dislocation glide velocity model motivates the con-

sideration of additional methods to introduce a direct dependence on temperature.

In a study of the isotropic thermoviscoplastic materials Zbib and Jubran proposed a

temperature dependent flow rule with a homologous temperature factor [203]. Adopt-

ing this same approach we propose, for future study, the modification to the power

law dislocation glide velocity, Eq (6.1), to introduce a direct temperature dependence:

vαglide = vo

∣∣∣∣ταgα
∣∣∣∣1/m · (1− T − Tr

Tm − Tr

)1/m∗

sign(τα) , if τα ≥ gαo (6.8)
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where T is the current temperature, Tr is a representative room temperature, Tm

is the metal melting temperature, and m∗ is the homologous temperature exponent,

following [203]. This modification will provide an increased increased dislocation glide

velocity with increasing temperature.

6.3 Conclusions and Recommendations

In this chapter we have compared two commonly used dislocation glide velocity

models in their ability to capture softening in response to temperature increases and

in their stability under material specific exponential parameter variations. Based on

both experimental data and engineering observations, we expect that the stress-strain

response of a metal will soften with exposure to increasing temperature. These expec-

tations are in line with the concept of the DBTT curve we have discussed in Chapter

1 in which lower temperature samples deform less than samples at higher temper-

atures at the same stress. In order to achieve our goal of predicting the influence

of irradiation microstructure evolution on the engineering scale DBTT curve, we re-

quire a crystal plasticity dislocation glide velocity model which responds consistently

to changes in the temperature.

Inconsistency in the crystal plasticity simulation response to changes in tempera-

ture, such as those observed in the enthalpy-based glide velocity model, do not sat-
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isfy this requirement. The further variability introduced into the stress response of

the enthalpy-based velocity equation by changes in the exponential parameters com-

pounds the probability of a non physical prediction from this glide velocity model.

Although the power law velocity model does not demonstrate a large change in the

simulation response, the consistency with which this model adheres to the expected

trend of softer stress responses under increasing temperature makes the power law

dislocation glide velocity model a more reliable simulation choice. We suggest a

straightforward future modification to the power law dislocation glide velocity model

with a homologous temperature factor to introduce temperature dependence into this

reliable velocity model.

We note the limitations of this study included a reliance solely on dislocation glide

when additional deformation mechanisms, such as climb and creep, are know to be

active at higher temperatures. Incorporating models for both of these mechanisms

into the CDD crystal plasticity framework will expand the usability of the framework

to higher temperatures.
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CHAPTER 7. CONCLUSION

In this work we have presented a CDD crystal plasticity framework and a set

of model additions for nuclear power plant structural application simulations. The

strength of this framework we have presented here is the ability to capture physical

interactions among different crystalline defect populations which are observed in the

microstructure of these structural materials. These crystalline defects include glide

mobile and immobile dislocations, geometrically necessary dislocations, twinning dis-

locations, irradiation defects, and thermal aging defects as we discussed in Chapter 2.

In this work we have presented the numerical implementation of models for interac-

tions among these different dislocations and defects with benchmark verifications for

these models, along with comparisons of the model predictions against experimental

data.

We have introduced the MOOSE implementation of the CDD crystal plasticity

framework within the context of BCC α iron, which is used in the reactor pressure

vessels of current light water reactors. In Chapter 3 we have demonstrated the ability

of the CDD dislocation evolution equations to capture the orientation specific behav-

ior of single α iron crystals. We have also highlighted the importance of the Monte

Carlo stochastic approach to modeling cross slip, in conjunction with the anisotropic

hardening of slip systems. We have concluded this chapter with a demonstration of
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the CDD crystal plasticity framework to a polycrystalline application, where the CDD

simulations align well with experimental data from both unirradiated and irradiated

polycrystalline α iron.

We have next introduced the addition of a model for geometrically necessary

dislocations (GNDs) to capture the effect of plastic lattice curvature from deformation

on the evolution of the glide dislocations. In the first portion of Chapter 4 we have

contrasted two different methods of calculating the GNDs for mesh independence and

solution smoothness before proceeding with the method based on the nodal ZZ-patch

recovery approach to calculate the Nye’s dislocation tensor. We have computed a

total GND density value from the Nye’s tensor. We then examined the predictions

of the GND model addition to the CDD crystal plasticity framework within a set of

single and bicrystal simulations. The results of these simulations demonstrated that

our GNDs model implementation is sensitive to changes in the grain boundary angle.

Our next model addition focused on the another type of dislocation: twinning

dislocations. Motivated by experimental results of micro-pillar compression testing

on a FCC nickel alloy, in Chapter 5 we have discussed a twin shear increment model

and demonstrated the implementation of this model as an additive component in

the plastic velocity gradient. We have also introduced a hardening term for the

thermally aged long range ordered precipitates into the glide dislocation slip resistance

model. Nickel based alloys are used for structural materials in the steam generation
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components of current reactors and are being considered for the reactor vessel of Gen

IV molten salt reactors. After demonstrating the use of the twinning model addition

in a set of benchmark problems, we have applied the twinning model addition to the

CDD crystal plasticity framework in simulations of the micro-pillar compression tests.

In the final chapter of this work we have presented the results of a compara-

tive study between two dislocation glide velocity models on the basis of sensitivity

to temperature and the stability of the calculated solution under variations of the

material-specific parameters. We have concluded in Chapter 6 that the power law

glide dislocation velocity model is better suited for CDD crystal plasticity simula-

tions. While this glide velocity model is more simple, it provides stable results over a

wide range of temperatures in which the enthalpy-based velocity model demonstrates

some nonphysical results.

7.1 Future Development and Potential Applications

We suggest a set of future applications for the CDD crystal plasticity framework

which we have implemented into MOOSE in this work. As a set of MOOSE-based

code, the CDD crystal plasticity framework can be coupled to a variety of physics

also implemented into the multiphysics platform of MOOSE. We outline here a few

of the future developmental goals for the coupling of the crystal plasticity code to
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other MOOSE code capabilities.

Extending the polycrystalline capabilities of the CDD crystal plasticity framework,

including the GND model, is one of our priorities for future development. One the

numerical implementation issues of the nodal ZZ-patch recovery method, which we

discussed in Chapter 4, have been addressed, we will apply the CDD framework to a

set of realistic and complex microstructures. After verifying and calibrating the CDD

GND model using EBSD data in a manner following [48, 36, 87], we will employ the

CDD crystal plasticity framework to study the impact of microstructure resulting

from advanced manufacturing techniques. We will explore coupling the CDD crystal

plasticity code to the phase field capabilities within MOOSE to better inform the

microstructure geometry and defect populations. This coupling approach is along

the lines of other crystal plasticity and phase field coupling efforts [53]; however,

the shared code base of these two MOOSE-based codes will allow for tighter code

coupling, perhaps as a MultiApp.

As one developmental aspect of this future coupling between the CDD crystal

plasticity and the phase field codes, we will modify the CDD codes developed as

part of this work, Appendix A., to utilize the newly developed automatic differential

capabilities in MOOSE. This automatic differentiation is possible through the use of

the third party library MetaPhysicL and computes the stress residuals and Jacobians

as a function of the temperature, displacement, and relative material properties at



227

run time. This capability produces more accurate Jacobians and thus better solution

convergence.

Beyond the structural materials we have studied in this work, dislocation and

defect populations play a large role in the performance of nuclear fuels. Within light

water reactor research our focus is on UO2 fuel pellets. These fuel pellets undergo sig-

nificant twinning [207]. The twinning model which we have implemented in Chapter

5 could be extended to allow for large twinning through an expansion of the orienta-

tion used to calculate the stress response. An expansion of the constitutive twinning

model to track densities of twin dislocations would enable the study of deformation

mechanisms in UO2 fuel with crystal plasticity.

Outside of the MOOSE platform, we will investigate coupling the CDD crystal

plasticity framework code to a standalone code, SCIANTIX, that predicts fission gas

bubble formation and release in UO2 and MOX fuels [149]. Fission gas release from

within the fuel pellet depends heavily on the microstructure, where gas atoms travel

along dislocations before accessing the grain boundary network to escape the fuel

pellets [150]. Dislocations are also known to promote the formation of larger fission

gas bubbles within the ceramic fuel by trapping and entangling these bubbles, and

the dislocation cores act as a source of vacancies for the bubbles [16]. Enhancing the

SCIANTIX code with models from the CDD crystal plasticity framework will allow

us to study how the deforming microstructure affects fission gas release.
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Finally we propose the investigation of forming a reduced order model based on

the physical interaction mechanisms modeled in the CDD framework. A reduced

order model could compute engineering scale material property behavior based on

mesoscale structure as determined by the CDD model in a more computationally

effective manner. The limitations on material length scale and simulation time scales

are challenges with the mesoscale modeling field has attempted to address with a

variety of approaches, including reduced order models and DFT simulations [80, 97].

The challenge in this future development area is to retain the influence of mesoscale

features within the microstructure, such as grain boundaries, without sacrificing com-

putational speed.

These future applications leverage the physical basis on which the CDD crystal

plasticity framework was developed. This physical foundation allows these future

developments to investigate the impact of microstructure evolution on engineering

scale properties in a wide range of operating and manufacturing conditions.
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APPENDIX

A. CDD Crystal Plasticity Classes Implemented in MOOSE

The following classes were developed within the MOOSE code tensor mechanics

module to complete the simulations shown in this work:

• ComputeCrystalPlasticityStress

• ComputeElasticityTensorConstantRotationCP

• CrystalPlasticityUpdate

• CrystalPlasticityCDDUpdateBase

• CrystalPlasticityKalidindiUpdate

• CrystalPlasticityCDDBCCFeUpdate

• CrystalPlasticityCDDEnthalpyVelocityBCCFeUpdate

• CrystalPlasticityCDDEnthalpyVelocityUpdateBase

• CrystalPlasticityCDDNiAlloyUpdate

• CrystalPlasticityCDDNiAlloyUpdateInternalFcnsGNDs

• CrystalPlasticityCDDUpdateBaseInternalFcnsGNDs
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[39] Véronique Doquet. Twinning and multiaxial cyclic plasticity of a low stacking-

fault-energy fcc alloy. Acta Metallurgica et Materialia, 41(8):2451–2459, 1993.

[40] James J Duderstadt. Nuclear Reactor Analysis. Wiley, 1976.

[41] F. P.E. Dunne, R. Kiwanuka, and A. J. Wilkinson. Crystal plasticity analysis

of micro-deformation, lattice rotation and geometrically necessary dislocation

density. Proceedings of the Royal Society A: Mathematical, Physical and En-

gineering Sciences, 468(2145):2509–2531, 2012.

[42] Fionn Dunne and Nik Petrinic. Introduction to Computational Plasticity. Ox-

ford University Press on Demand, 2005.

[43] Jaafar A El-Awady. Unravelling the physics of size-dependent dislocation-

mediated plasticity. Nature communications, 6:5926, 2015.

[44] BS El-Dasher, BL Adams, and AD Rollett. Experimental recovery of geo-

metrically necessary dislocation density in polycrystals. Scripta Materialia,

48(2):141–145, 2003.

[45] L. P. Evers, W. A.M. Brekelmans, and M. G.D. Geers. Non-local crystal



237

plasticity model with intrinsic SSD and GND effects. Journal of the Mechanics

and Physics of Solids, 52(10):2379–2401, 2004.

[46] L. P. Evers, D. M. Parks, W. A.M. Brekelmans, and M. G.D. Geers. Crys-

tal plasticity model with enhanced hardening by geometrically necessary dis-

location accumulation. Journal of the Mechanics and Physics of Solids,

50(11):2403–2424, 2002.

[47] Huiyang Fei, Amit Abraham, Nikhilesh Chawla, and Hanqing Jiang. Evalu-

ation of micro-pillar compression tests for accurate determination of elastic-

plastic constitutive relations. Journal of Applied Mechanics, 79(6):061011,

2012.

[48] D. P. Field, C. C. Merriman, N. Allain-Bonasso, and F. Wagner. Quantifica-

tion of dislocation structure heterogeneity in deformed polycrystals by EBSD.

Modelling and Simulation in Materials Science and Engineering, 20(2), 2012.

[49] P Fischer, J Mergheim, and P Steinmann. On the C1 continuous discretiza-

tion of non-linear gradient elasticity: A comparison of nem and fem based
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